Abstract

The optical properties of carbon spheroids are compared with those of carbon spheres for all size regimes. In general, the absorption cross section/unit volume is increased by axial elongation, particularly away from the resonance region. The results are specific to carbon since the effect of shape change in a given size regime can depend crucially on the value of the refractive index.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Roessler, F. R. Faxvog, J. Opt. Soc. Am. 70, 230 (1980).
    [CrossRef]
  2. G. Mie, Ann. Phys. Leipzig 25, 377 (1908).
    [CrossRef]
  3. L. P. Bayvel, A. R. Jones, Electromagnetic Scattering and Its Applications (Applied Science, New Jersey, 1981).
    [CrossRef]
  4. M. Kerker, The Scattering of Light (Academic, New York, 1969).
  5. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  6. S. Asano, M. Sato, Appl. Opt. 19, 962 (1980).
    [CrossRef] [PubMed]
  7. A. R. Jones, J. Phys. D 5, L1 (1972).
    [CrossRef]
  8. P. Latimer, Appl. Opt. 19, 3039 (1980).
    [CrossRef] [PubMed]
  9. D. M. Roessler, F. R. Faxvog, J. Opt. Soc. Am. 69, 1699 (1979).
    [CrossRef]
  10. D. M. Roessler, F. R. Faxvog, Appl. Opt. 19, 578 (1980).
    [CrossRef] [PubMed]
  11. T. B. A. Senior, Appl. Opt. 19, 2483 (1980).
    [CrossRef] [PubMed]
  12. T. B. A. Senior, H. Weil, Appl. Phys. B 29, 117 (1982).
    [CrossRef]
  13. C. F. Bohren, D. R. Huffman, Appl. Opt. 20, 959 (1981).
    [CrossRef] [PubMed]
  14. P. W. Barber, D-S. Y. Wang, M. B. Long, Appl. Opt. 20, 1121 (1981).
    [CrossRef] [PubMed]
  15. P. Chýlek, V. Ramaswamy, Appl. Opt. 21, 4339 (1982).
    [CrossRef] [PubMed]
  16. F. R. Faxvog, D. M. Roessler, Appl. Opt. 20, 729 (1981).
    [CrossRef] [PubMed]

1982

T. B. A. Senior, H. Weil, Appl. Phys. B 29, 117 (1982).
[CrossRef]

P. Chýlek, V. Ramaswamy, Appl. Opt. 21, 4339 (1982).
[CrossRef] [PubMed]

1981

1980

1979

1972

A. R. Jones, J. Phys. D 5, L1 (1972).
[CrossRef]

1908

G. Mie, Ann. Phys. Leipzig 25, 377 (1908).
[CrossRef]

Asano, S.

Barber, P. W.

Bayvel, L. P.

L. P. Bayvel, A. R. Jones, Electromagnetic Scattering and Its Applications (Applied Science, New Jersey, 1981).
[CrossRef]

Bohren, C. F.

Chýlek, P.

Faxvog, F. R.

Huffman, D. R.

Jones, A. R.

A. R. Jones, J. Phys. D 5, L1 (1972).
[CrossRef]

L. P. Bayvel, A. R. Jones, Electromagnetic Scattering and Its Applications (Applied Science, New Jersey, 1981).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Latimer, P.

Long, M. B.

Mie, G.

G. Mie, Ann. Phys. Leipzig 25, 377 (1908).
[CrossRef]

Ramaswamy, V.

Roessler, D. M.

Sato, M.

Senior, T. B. A.

T. B. A. Senior, H. Weil, Appl. Phys. B 29, 117 (1982).
[CrossRef]

T. B. A. Senior, Appl. Opt. 19, 2483 (1980).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wang, D-S. Y.

Weil, H.

T. B. A. Senior, H. Weil, Appl. Phys. B 29, 117 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Absorption cross section/unit volume CA/V as a function of the axial ratio Z for randomly oriented carbon spheroids in the Rayleigh size regime.

Fig. 2
Fig. 2

Absorption cross section/unit volume CA/V for spheres (Z = 1) and for spheroids with an axial ratio of 3:1 as a function of D, where D is the diameter of the volume equivalent sphere. The data are for a material such as carbon with refractive index m = 2 1 i and for a wavelength λ = 0.55 μm.

Tables (1)

Tables Icon

Table I Attenuation Cross Section/Unit Volume CA/V for Randomly Oriented Carbon Spheroids m = 2 1 i in the Rayleigh and Geometric Regions; the values are Normalized to Those of the Sphere of Equivalent Volume

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

C A V = Q A G V ,
C A V = 2 π 3 λ Re { i j = 1 3 1 L j + 1 m 2 1 } .
C A V = 4 π m 1 m 2 3 λ ( 27 | m 2 + 2 | 2 ) spheres
= 4 π m 1 m 2 3 λ ( 1 + 8 | m 2 + 1 | 2 ) cylinders
= 4 π m 1 m 2 3 λ ( 2 + 1 | m 2 | 2 ) disks .
prolate : L 1 = 1 e 2 e 2 [ 1 2 e ln ( 1 + e 1 e ) 1 ] ,
oblate : L 1 = 1 e 2 [ 1 ( 1 e 2 e 2 ) 1 / 2 sin 1 e ] .
C E V = Q E G V = Q E S 4 V .
prolate ( a > b ) : S = 2 π b 2 + 2 π a b e sin 1 e ,
oblate ( a < b ) : S = 2 π b 2 + π a 2 e ln ( 1 + e 1 e ) .
prolate : S V = 3 D Z 2 / 3 ( 1 + Z e sin 1 e )
oblate : S V = 3 Z 2 / 3 D [ 1 + 1 2 e Z 2 ln ( 1 + e 1 e ) ] .
π 4 Z 1 / 3
Z 2 / 3 2

Metrics