Abstract

A set of holographic filters was developed to convert the Gaussian intensity distribution of a collimated laser beam into a uniform one. The design and the fabricating method of the holographic filters are presented and experimental results are shown.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).
  2. W-H. Lee, Opt. Commun. 36, 469 (1981).
    [CrossRef]
  3. W. B. Veldkamp, C. J. Kastner, Appl. Opt. 21, 345 (1982).
    [CrossRef] [PubMed]
  4. W. B. Veldkamp, Appl. Opt. 21, 3209 (1982).
    [CrossRef] [PubMed]
  5. C. S. Ih, Appl. Opt. 11, 694 (1972).
    [CrossRef]
  6. P. W. Rhodes, D. L. Shealy, Appl. Opt. 19, 3545 (1980).
    [CrossRef] [PubMed]
  7. D. Shafer, Opt. Laser Technol. 14, 159 (1982).
    [CrossRef]
  8. W-H Lee, “Computer-Generated Holograms: Techniques and Applications,” in Prog. Opt.16, 121E. Wolf Ed. (North-Holland, Amsterdam, 1978).
  9. D. Meyerhofer, “Dichromated Gelatin,” in Holographic Recording Materials, H. M. Smith, Ed. (Springer, Berlin, 1980).

1982 (3)

1981 (1)

W-H. Lee, Opt. Commun. 36, 469 (1981).
[CrossRef]

1980 (2)

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).

P. W. Rhodes, D. L. Shealy, Appl. Opt. 19, 3545 (1980).
[CrossRef] [PubMed]

1972 (1)

Brévignon, M.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).

Dubroeucq, G. M.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).

Ih, C. S.

Kastner, C. J.

Lacombat, M.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).

Lee, W-H

W-H Lee, “Computer-Generated Holograms: Techniques and Applications,” in Prog. Opt.16, 121E. Wolf Ed. (North-Holland, Amsterdam, 1978).

Lee, W-H.

W-H. Lee, Opt. Commun. 36, 469 (1981).
[CrossRef]

Massin, J.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).

Meyerhofer, D.

D. Meyerhofer, “Dichromated Gelatin,” in Holographic Recording Materials, H. M. Smith, Ed. (Springer, Berlin, 1980).

Rhodes, P. W.

Shafer, D.

D. Shafer, Opt. Laser Technol. 14, 159 (1982).
[CrossRef]

Shealy, D. L.

Veldkamp, W. B.

Appl. Opt. (4)

Opt. Commun. (1)

W-H. Lee, Opt. Commun. 36, 469 (1981).
[CrossRef]

Opt. Laser Technol. (1)

D. Shafer, Opt. Laser Technol. 14, 159 (1982).
[CrossRef]

Solid State Technol. (1)

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brévignon, Solid State Technol., 23, Aug.115 (1980).

Other (2)

W-H Lee, “Computer-Generated Holograms: Techniques and Applications,” in Prog. Opt.16, 121E. Wolf Ed. (North-Holland, Amsterdam, 1978).

D. Meyerhofer, “Dichromated Gelatin,” in Holographic Recording Materials, H. M. Smith, Ed. (Springer, Berlin, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Afocal system for converting the beam intensity.

Fig. 2
Fig. 2

Computer-generated holograms: (a) CGH1 and (b) CGH2.

Fig. 3
Fig. 3

Optical setup for testing the CGHs.

Fig. 4
Fig. 4

Interferograms (a) and (b) with ±1st-order diffracted waves from CGH1 and CGH2, respectively.

Fig. 5
Fig. 5

Optical setup for recording the DCG hologram.

Fig. 6
Fig. 6

Experimental arrangement with an interferometer for demonstrating the feasibility of the method.

Fig. 7
Fig. 7

Gaussian intensity input profile (upper) and the uniform output profile (lower).

Fig. 8
Fig. 8

Interferograms for testing plane mirrors using (a) a collimated Gaussian beam and (b) a collimated uniform beam.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i ( r ) = e r 2 / 2 α 2 ,
i ( r ) = e 2 r 2 / r 0 2 .
E ( r ) = 2 π 0 r i ( r ) rdr = π r 0 2 2 ( 1 e 2 r 2 / r 0 2 ) .
E ( r 0 ) E ( ) = 1 1 / e 2 = 0.865 .
2 π 0 r i ( r ) rdr = σ π R 2 .
R = [ r 0 2 2 σ ( 1 e 2 r 2 / r 0 2 ) ] 1 / 2 ,
r = [ r 0 2 2 ln ( 1 1 2 σ R 2 / r 0 2 ) ] 1 / 2 .
d W 1 ( r ) d r = R r Z , W 1 ( 0 ) = 0 .
d W 2 ( R ) d R = R r Z , W 2 ( 0 ) = 0 .

Metrics