Abstract

For studying the spectrum of weak extended sources in the 1–2-μm wavelength region, a phase grid-type interferntial spectrometer was made. Its principle consists of decoding by a phase grid a Fourier interferogram localized out of an appropriated plane-wave interferometer. Its description (resolving power is ≈30,000), a comparison with other interferential spectrometers, and first experimental results are given.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Prat, Jpn. J. Appl. Phys. Suppl. I, 448 (1965).
  2. R. Prat, Opt. Acta 18, 213, 247 (1971).
    [CrossRef]
  3. R. Prat, C. R. Acad. Sci. 271, 559 (1970).
  4. P. Jacquinot, J. Phys. Radium 19, 223 (1958).
    [CrossRef]
  5. R. PratNouvelle Méthode Spectrométrique Interférentielle, “Photographic and Spectroscopic Optics,” Preprint 1, 221, Tokyo and Kyoto meeting (1964).
  6. P. Connes, Opt. Acta 4, 136 (1957).
    [CrossRef]
  7. P. Fellgett, J. Phys. Radium 19, 187 (1958).
    [CrossRef]
  8. P. Connes, G. Michel, C. R. Acad. Sci. 270, 1458 (1970).
  9. M. Lehmann, J. P. Lauer, J. W. Goodman, Appl. Opt. 9, 1948 (1970).
    [PubMed]
  10. A. Blanc-Lapierre, et B. Picinbono, Propriétés Statistiques du Bruit de Fond (Masson, Paris, 1961).
  11. G. Fortunate, et A. Marechal, C. R. Acad. Sci. 274, 931 (1972).
  12. A. Marechal, J. Opt. Soc. Am. 65, 1183 (1975).
  13. R. W. Esplin, Opt. Eng. 17, 73 (1978).
    [CrossRef]
  14. G. Fortunato, A. Marechal, C. R. Acad. Sci. 276, 527 (1973).

1978 (1)

R. W. Esplin, Opt. Eng. 17, 73 (1978).
[CrossRef]

1975 (1)

A. Marechal, J. Opt. Soc. Am. 65, 1183 (1975).

1973 (1)

G. Fortunato, A. Marechal, C. R. Acad. Sci. 276, 527 (1973).

1972 (1)

G. Fortunate, et A. Marechal, C. R. Acad. Sci. 274, 931 (1972).

1971 (1)

R. Prat, Opt. Acta 18, 213, 247 (1971).
[CrossRef]

1970 (3)

R. Prat, C. R. Acad. Sci. 271, 559 (1970).

P. Connes, G. Michel, C. R. Acad. Sci. 270, 1458 (1970).

M. Lehmann, J. P. Lauer, J. W. Goodman, Appl. Opt. 9, 1948 (1970).
[PubMed]

1965 (1)

R. Prat, Jpn. J. Appl. Phys. Suppl. I, 448 (1965).

1958 (2)

P. Fellgett, J. Phys. Radium 19, 187 (1958).
[CrossRef]

P. Jacquinot, J. Phys. Radium 19, 223 (1958).
[CrossRef]

1957 (1)

P. Connes, Opt. Acta 4, 136 (1957).
[CrossRef]

Blanc-Lapierre, A.

A. Blanc-Lapierre, et B. Picinbono, Propriétés Statistiques du Bruit de Fond (Masson, Paris, 1961).

Connes, P.

P. Connes, G. Michel, C. R. Acad. Sci. 270, 1458 (1970).

P. Connes, Opt. Acta 4, 136 (1957).
[CrossRef]

Esplin, R. W.

R. W. Esplin, Opt. Eng. 17, 73 (1978).
[CrossRef]

Fellgett, P.

P. Fellgett, J. Phys. Radium 19, 187 (1958).
[CrossRef]

Fortunate, G.

G. Fortunate, et A. Marechal, C. R. Acad. Sci. 274, 931 (1972).

Fortunato, G.

G. Fortunato, A. Marechal, C. R. Acad. Sci. 276, 527 (1973).

Goodman, J. W.

Jacquinot, P.

P. Jacquinot, J. Phys. Radium 19, 223 (1958).
[CrossRef]

Lauer, J. P.

Lehmann, M.

Marechal, A.

A. Marechal, J. Opt. Soc. Am. 65, 1183 (1975).

G. Fortunato, A. Marechal, C. R. Acad. Sci. 276, 527 (1973).

Marechal, et A.

G. Fortunate, et A. Marechal, C. R. Acad. Sci. 274, 931 (1972).

Michel, G.

P. Connes, G. Michel, C. R. Acad. Sci. 270, 1458 (1970).

Picinbono, et B.

A. Blanc-Lapierre, et B. Picinbono, Propriétés Statistiques du Bruit de Fond (Masson, Paris, 1961).

Prat, R.

R. Prat, Opt. Acta 18, 213, 247 (1971).
[CrossRef]

R. Prat, C. R. Acad. Sci. 271, 559 (1970).

R. Prat, Jpn. J. Appl. Phys. Suppl. I, 448 (1965).

R. PratNouvelle Méthode Spectrométrique Interférentielle, “Photographic and Spectroscopic Optics,” Preprint 1, 221, Tokyo and Kyoto meeting (1964).

Appl. Opt. (1)

C. R. Acad. Sci. (4)

R. Prat, C. R. Acad. Sci. 271, 559 (1970).

G. Fortunate, et A. Marechal, C. R. Acad. Sci. 274, 931 (1972).

P. Connes, G. Michel, C. R. Acad. Sci. 270, 1458 (1970).

G. Fortunato, A. Marechal, C. R. Acad. Sci. 276, 527 (1973).

J. Opt. Soc. Am. (1)

A. Marechal, J. Opt. Soc. Am. 65, 1183 (1975).

J. Phys. Radium (2)

P. Jacquinot, J. Phys. Radium 19, 223 (1958).
[CrossRef]

P. Fellgett, J. Phys. Radium 19, 187 (1958).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. I (1)

R. Prat, Jpn. J. Appl. Phys. Suppl. I, 448 (1965).

Opt. Acta (2)

R. Prat, Opt. Acta 18, 213, 247 (1971).
[CrossRef]

P. Connes, Opt. Acta 4, 136 (1957).
[CrossRef]

Opt. Eng. (1)

R. W. Esplin, Opt. Eng. 17, 73 (1978).
[CrossRef]

Other (2)

A. Blanc-Lapierre, et B. Picinbono, Propriétés Statistiques du Bruit de Fond (Masson, Paris, 1961).

R. PratNouvelle Méthode Spectrométrique Interférentielle, “Photographic and Spectroscopic Optics,” Preprint 1, 221, Tokyo and Kyoto meeting (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectrometer schematic design and beam paths: mirror M3 ≈280 mm long; distance D = 300 mm.

Fig. 2
Fig. 2

Geometry of spectral scanning: S1S2B and S1OA are similar triangles.

Fig. 3
Fig. 3

(a) Spetrometer realization; (b) laser beam path when the spectrometer is adjusted, a mirror taking the place of the grid.

Fig. 4
Fig. 4

η0,η1,η2,η3 are the respective intensities of the 0,1,2,3 orders diffracted as a function of the amplitude of phase modulation ψ0. The inset shows how the intensity modulation goes on for the five more intense outgoing beams at spatial resonance when ψ0 = ψmax, corresponding to the maximum of η1; at this point, η0 = η2; this can be proved by noticing that I11 = (1)/(0).

Fig. 5
Fig. 5

Comparison of linear detection Y = | X | with synchronous detection, when both time constant values are 10 sec. Such a comparison proved both signal-to-noise ratio equivalence, the detector noise being the PbS cell noise. (a) Synchronous detection; (b) linear detection.

Fig. 6
Fig. 6

Rapid scanning spectrum of a mercury lamp in the near infrared.

Fig. 7
Fig. 7

Apparatus function.

Fig. 8
Fig. 8

On the left, 1.014-μm line; on the right, 1.129-μm line (×2).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S 1 B O A = S 1 S 2 S 1 O = 2 S 1 O sin β S 1 O = 2 sin β .
δ 1 = 2 h cos i ( 1 + cos 2 i ) = 4 h cos i .
N B = N K + K B = h + x , N P = ( x + h ) tan θ = h tan i ;
x = h ( 1 tan θ tan i 1 ) = h cos ( θ + i ) sin θ sin i .
= Δ α cos α = Δ λ / p .
R = λ Δ λ = 2 L p = 2 N ,
f ( σ ) = 2 0 δ M I ( δ ) cos 2 π σ δ d δ .
A = p / 2 p / 2 exp { j [ ψ ( x ) + k x sin i ] } d x ,
η m = [ 2 π 0 π / 2 cos mu cos ( ψ 0 cos u ) d u ] 2 m even , η m = [ 2 π 0 π / 2 cos mu sin ( ψ 0 cos u ) d u ] 2 m odd .
I 1 m = [ 2 2 π 0 π / 2 cos u cos mu sin ( ψ 0 cos u ) d u ] m even 2 , I 2 m = [ 2 2 π 0 π / 2 sin u sin mu sin ( ψ 0 cos u ) d u ] 2 , I 1 m = [ 2 2 π 0 π / 2 cos u cos mu cos ( ψ 0 cos u ) d u ] m odd 2 , I 2 m = [ 2 2 π 0 π / 2 sin u sin mu cos ( ψ 0 cos u ) d u ] 2 .
( S / B ) s = ( S / B ) e 1 / 2 8 RC Δ ν ,
B S = σ s 2 = [ E ( X B 2 ) E 2 ( X B ) ] 1 / 2 .

Metrics