Abstract

Broadband CARS spectra of N2 and CO have been obtained from the postflame gases of rich CH4/N2O flames using the nonplanar BOXCARS technique. The temperature and concentration of both N2 and CO in these flames were estimated from CARS spectra with the aid of model calculations and agreed with standard thermochemical predictions. In addition, several pure rotational H2 CARS transitions, certain of which had been previously unobserved, were seen in several spectral regions, most notably in both the CO and NO CARS regions. These observations are important in future modeling of CARS data.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Farrow, P. L. Mattern, L. A. Rahn, Appl. Opt. 21, 3119 (1982).
    [CrossRef] [PubMed]
  2. R. J. Hall, A. C. Eckbreth, Opt. Eng. 20, 494 (1981).
  3. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, R. K. Erf, Ed. (Academic, New York, 1982).
  4. S. Druet, J. P. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biological Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).
  5. J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, New York, 1979).
    [CrossRef]
  6. J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977).
  7. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
  8. W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
    [CrossRef]
  9. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
    [CrossRef]
  10. R. L. Farrow, P. L. Mattern, L. A. Rahn, “Cost-Beam Background-Free CARS Measurement in a Methane Diffusion Flame,” Sandia Laboratories Report 80-8640, Livermore, Calif. (1980).
  11. J. A. Shirley, R. J. Hall, A. C. Eckbreth, Opt. Lett. 5, 380 (1980).
    [CrossRef] [PubMed]
  12. A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
    [CrossRef]
  13. K. Muller-Dethlefs, M. Pealat, J. P. E. Taran, Ber. Bunsen-ges. Phys. Chem. 85, 803 (1981).
    [CrossRef]
  14. L. E. Harris, M. E. McIllwain, Combust. Flame 48, 97 (1982).
    [CrossRef]
  15. L. E. Harris, M. E. McIlwain, “Coherent Anti-Stokes Raman Spectroscopy in Propellant Flames,” in Fast Reactions in Energy Systems, C. Capellos, R. F. Walker, Eds. (Reidel, Boston, 1981).
    [CrossRef]
  16. L. E. Harris, Chem. Phys. Lett. 93, 335 (1982).
    [CrossRef]
  17. L. E. Harris, “CARS Spectra from Lean and Stoichiometric CH4/N2O Flames,” Combust. Flame, in press.
  18. R. J. Hall, Combust. Flame 35, 47 (1979).
    [CrossRef]
  19. A. Owyoung, L. A. Rahn, J. Quantum Electron. 15, 25D (1979).
    [CrossRef]
  20. S. Gordon, B. J. McBride, “Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations,” NASA SP-273 (1976).
  21. A. C. Eckbreth, P. A. Bonczyk, J. A. Shirley, “Investigation of Saturated Laser Fluorescence and CARS Spectroscopic Techniques for Combustion Diagnosis,” U.S. Environmental Protection Agency, Report EPA-600/7-78-104, Cincinnati (1978).
  22. L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
    [CrossRef]
  23. D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981).
    [CrossRef] [PubMed]
  24. U. Fink, T. A. Wiggins, D. H. Rank, J. Mol. Spectrosc. 18, 384 (1965).
    [CrossRef]
  25. B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).
    [CrossRef]

1982

L. E. Harris, M. E. McIllwain, Combust. Flame 48, 97 (1982).
[CrossRef]

L. E. Harris, Chem. Phys. Lett. 93, 335 (1982).
[CrossRef]

R. L. Farrow, P. L. Mattern, L. A. Rahn, Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

1981

D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981).
[CrossRef] [PubMed]

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

K. Muller-Dethlefs, M. Pealat, J. P. E. Taran, Ber. Bunsen-ges. Phys. Chem. 85, 803 (1981).
[CrossRef]

R. J. Hall, A. C. Eckbreth, Opt. Eng. 20, 494 (1981).

1980

1979

R. J. Hall, Combust. Flame 35, 47 (1979).
[CrossRef]

A. Owyoung, L. A. Rahn, J. Quantum Electron. 15, 25D (1979).
[CrossRef]

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

1978

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

1976

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

1965

U. Fink, T. A. Wiggins, D. H. Rank, J. Mol. Spectrosc. 18, 384 (1965).
[CrossRef]

1957

B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

Bonczyk, P. A.

A. C. Eckbreth, P. A. Bonczyk, J. A. Shirley, “Investigation of Saturated Laser Fluorescence and CARS Spectroscopic Techniques for Combustion Diagnosis,” U.S. Environmental Protection Agency, Report EPA-600/7-78-104, Cincinnati (1978).

Druet, S.

S. Druet, J. P. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biological Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).

Eckbreth, A. C.

R. J. Hall, A. C. Eckbreth, Opt. Eng. 20, 494 (1981).

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, Opt. Lett. 5, 380 (1980).
[CrossRef] [PubMed]

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

A. C. Eckbreth, P. A. Bonczyk, J. A. Shirley, “Investigation of Saturated Laser Fluorescence and CARS Spectroscopic Techniques for Combustion Diagnosis,” U.S. Environmental Protection Agency, Report EPA-600/7-78-104, Cincinnati (1978).

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, R. K. Erf, Ed. (Academic, New York, 1982).

Farrow, R. L.

R. L. Farrow, P. L. Mattern, L. A. Rahn, Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Cost-Beam Background-Free CARS Measurement in a Methane Diffusion Flame,” Sandia Laboratories Report 80-8640, Livermore, Calif. (1980).

Fink, U.

U. Fink, T. A. Wiggins, D. H. Rank, J. Mol. Spectrosc. 18, 384 (1965).
[CrossRef]

Gordon, S.

S. Gordon, B. J. McBride, “Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations,” NASA SP-273 (1976).

Hall, R. J.

R. J. Hall, A. C. Eckbreth, Opt. Eng. 20, 494 (1981).

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, Opt. Lett. 5, 380 (1980).
[CrossRef] [PubMed]

R. J. Hall, Combust. Flame 35, 47 (1979).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, R. K. Erf, Ed. (Academic, New York, 1982).

Harris, L. E.

L. E. Harris, M. E. McIllwain, Combust. Flame 48, 97 (1982).
[CrossRef]

L. E. Harris, Chem. Phys. Lett. 93, 335 (1982).
[CrossRef]

L. E. Harris, “CARS Spectra from Lean and Stoichiometric CH4/N2O Flames,” Combust. Flame, in press.

L. E. Harris, M. E. McIlwain, “Coherent Anti-Stokes Raman Spectroscopy in Propellant Flames,” in Fast Reactions in Energy Systems, C. Capellos, R. F. Walker, Eds. (Reidel, Boston, 1981).
[CrossRef]

Harvey, A. B.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977).

Klick, D.

Knighten, G. V.

J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, New York, 1979).
[CrossRef]

Marko, K. A.

Mattern, P. L.

R. L. Farrow, P. L. Mattern, L. A. Rahn, Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Cost-Beam Background-Free CARS Measurement in a Methane Diffusion Flame,” Sandia Laboratories Report 80-8640, Livermore, Calif. (1980).

McBride, B. J.

S. Gordon, B. J. McBride, “Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations,” NASA SP-273 (1976).

McDonald, J. R.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977).

McIllwain, M. E.

L. E. Harris, M. E. McIllwain, Combust. Flame 48, 97 (1982).
[CrossRef]

McIlwain, M. E.

L. E. Harris, M. E. McIlwain, “Coherent Anti-Stokes Raman Spectroscopy in Propellant Flames,” in Fast Reactions in Energy Systems, C. Capellos, R. F. Walker, Eds. (Reidel, Boston, 1981).
[CrossRef]

Muller-Dethlefs, K.

K. Muller-Dethlefs, M. Pealat, J. P. E. Taran, Ber. Bunsen-ges. Phys. Chem. 85, 803 (1981).
[CrossRef]

Nibler, J. W.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977).

J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, New York, 1979).
[CrossRef]

Owyoung, A.

A. Owyoung, L. A. Rahn, J. Quantum Electron. 15, 25D (1979).
[CrossRef]

Pealat, M.

K. Muller-Dethlefs, M. Pealat, J. P. E. Taran, Ber. Bunsen-ges. Phys. Chem. 85, 803 (1981).
[CrossRef]

Rahn, L. A.

R. L. Farrow, P. L. Mattern, L. A. Rahn, Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

A. Owyoung, L. A. Rahn, J. Quantum Electron. 15, 25D (1979).
[CrossRef]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Cost-Beam Background-Free CARS Measurement in a Methane Diffusion Flame,” Sandia Laboratories Report 80-8640, Livermore, Calif. (1980).

Rank, D. H.

U. Fink, T. A. Wiggins, D. H. Rank, J. Mol. Spectrosc. 18, 384 (1965).
[CrossRef]

Rimai, L.

Roh, W. B.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Shaub, W. M.

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977).

Shirley, J. A.

J. A. Shirley, R. J. Hall, A. C. Eckbreth, Opt. Lett. 5, 380 (1980).
[CrossRef] [PubMed]

A. C. Eckbreth, P. A. Bonczyk, J. A. Shirley, “Investigation of Saturated Laser Fluorescence and CARS Spectroscopic Techniques for Combustion Diagnosis,” U.S. Environmental Protection Agency, Report EPA-600/7-78-104, Cincinnati (1978).

Stoicheff, B. P.

B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).
[CrossRef]

Taran, J. P.

S. Druet, J. P. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biological Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).

Taran, J. P. E.

K. Muller-Dethlefs, M. Pealat, J. P. E. Taran, Ber. Bunsen-ges. Phys. Chem. 85, 803 (1981).
[CrossRef]

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Wiggins, T. A.

U. Fink, T. A. Wiggins, D. H. Rank, J. Mol. Spectrosc. 18, 384 (1965).
[CrossRef]

Zych, L. J.

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Ber. Bunsen-ges. Phys. Chem.

K. Muller-Dethlefs, M. Pealat, J. P. E. Taran, Ber. Bunsen-ges. Phys. Chem. 85, 803 (1981).
[CrossRef]

Can. J. Phys.

B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).
[CrossRef]

Chem. Phys. Lett.

L. E. Harris, Chem. Phys. Lett. 93, 335 (1982).
[CrossRef]

Combust. Flame

R. J. Hall, Combust. Flame 35, 47 (1979).
[CrossRef]

L. E. Harris, M. E. McIllwain, Combust. Flame 48, 97 (1982).
[CrossRef]

Combust. Sci. Technol.

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. Mol. Spectrosc.

U. Fink, T. A. Wiggins, D. H. Rank, J. Mol. Spectrosc. 18, 384 (1965).
[CrossRef]

J. Quantum Electron.

A. Owyoung, L. A. Rahn, J. Quantum Electron. 15, 25D (1979).
[CrossRef]

Opt. Commun.

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

Opt. Eng.

R. J. Hall, A. C. Eckbreth, Opt. Eng. 20, 494 (1981).

Opt. Lett.

Other

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, R. K. Erf, Ed. (Academic, New York, 1982).

S. Druet, J. P. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biological Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).

J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, New York, 1979).
[CrossRef]

J. W. Nibler, W. M. Shaub, J. R. McDonald, A. B. Harvey, “Coherent Anti-Stokes Raman Spectroscopy,” in Vibrational Spectra and Structure, Vol. 6, J. R. Durig, Ed. (Elsevier, Amsterdam, 1977).

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

L. E. Harris, M. E. McIlwain, “Coherent Anti-Stokes Raman Spectroscopy in Propellant Flames,” in Fast Reactions in Energy Systems, C. Capellos, R. F. Walker, Eds. (Reidel, Boston, 1981).
[CrossRef]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Cost-Beam Background-Free CARS Measurement in a Methane Diffusion Flame,” Sandia Laboratories Report 80-8640, Livermore, Calif. (1980).

L. E. Harris, “CARS Spectra from Lean and Stoichiometric CH4/N2O Flames,” Combust. Flame, in press.

S. Gordon, B. J. McBride, “Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations,” NASA SP-273 (1976).

A. C. Eckbreth, P. A. Bonczyk, J. A. Shirley, “Investigation of Saturated Laser Fluorescence and CARS Spectroscopic Techniques for Combustion Diagnosis,” U.S. Environmental Protection Agency, Report EPA-600/7-78-104, Cincinnati (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental points and calculated spectrum (solid line) for N2 CARS signal for a (ϕ) = 1.0 CH4/N2O flame, probe height = 2 mm; calculated variables used were T = 3000 K and concentration =50%.

Fig. 2
Fig. 2

Experimental points and calculated spectrum (solid line) for a CO CARS signal for a ϕ = 2.5 CH4/N2O flame, probe height = 2 mm; calculated variables used were T = 2550 K and concentration = 16%.

Fig. 3
Fig. 3

CARS spectrum in CO region for a (a) ϕ = 1.2 flame, (b) ϕ = 1.8 flame, and (c) ϕ = 2.5 flame. The CO resonance is superimposed on the nonresonant susceptibility background. For analysis of the narrow peak at 2131 cm−1, see text.

Fig. 4
Fig. 4

CARS spectrum showing behavior of narrow resonances from 1900 to 1600 cm−1. Note intensity changes (superimposed on the background nonresonant susceptibility) for (a) ϕ = 0.5, (b) ϕ = 1.2, (c) ϕ = 1.8, and (d) ϕ = 2.5.

Fig. 5
Fig. 5

Two N2 CARS spectra in ϕ = 1.8 flames, each with a calculated spectrum of (top) 2.0-cm−1 resolution and (lower) 1.0-cm−1 resolution. For (a), calculated parameters were T = 2400 K and C = 36% and for (b), T = 2300 K and C = 37%. Note the experimental spike at 2298 cm−1.

Fig. 6
Fig. 6

Unmodified spectrum in a ϕ = 1.8 flame showing signals from CO CARS, N2 CARS, and two H2 CARS lines. Calculations on this spectrum show 39% N2,13% CO, 2500 K for CO temperature, 2500 K for N2 temperature.

Tables (1)

Tables Icon

Table I Variation of the Intensity of Hydrogen Rotational Transition With Hydrogen Concentration

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = χ r + χ n r .
| χ ( 3 ) | 2 = χ 2 + 2 χ χ n r + χ 2 + χ n r 2 .

Metrics