Abstract

New direct and implicit algorithms for optical matrix–vector and systolic array processors are considered. Direct rather than indirect algorithms to solve linear systems and implicit rather than explicit solutions to solve second-order partial differential equations are discussed. In many cases, such approaches more properly utilize the advantageous features of optical systolic array processors. The matrix-decomposition operation (rather than solution of the simplified matrix–vector equation that results) is recognized as the computationally burdensome aspect of such problems that should be computed on an optical system. The Householder QR matrix-decomposition algorithm is considered as a specific example of a direct solution. Extensions to eigenvalue computation and formation of matrices of special structure are also noted.

© 1983 Optical Society of America

Full Article  |  PDF Article
Related Articles
Performance analysis of matrix preconditioning algorithms on parallel optical processors

Anjan Ghosh and Palacharla Paparao
J. Opt. Soc. Am. A 5(1) 39-48 (1988)

Acoustooptic transducers in iterative optical vector–matrix processors

David Casasent
Appl. Opt. 21(10) 1859-1865 (1982)

Frequency-multiplexed and pipelined iterative optical systolic array processors

David Casasent, James Jackson, and Charles Neuman
Appl. Opt. 22(1) 115-124 (1983)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription