Abstract

A method of making dichromated gelatin holographic lenses (hololens) with many equal intensity foci and some applications of the lens are described. The method employs a specially designed contact screen in a coherent optical spatial filtering system with the resulting holographic lens recorded in a dichromated gelatin film. The principle of the design and a detailed discussion of the various space–bandwidth products of the optical system are discussed. For demonstration, a 25-focus holographic lens has been made. As examples of the application of the multifocus hololens, the experimental results of its usages in the reproduction of 25 replicas of an image and in a real-time Vander Lugt matched filter pattern recognition system are presented.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Rudge, W. E. Harding, W. E. Mutter, IBM J. Res. Dev. 2, 146 (1963).
    [CrossRef]
  2. G. Groh, Appl. Opt. 7, 1643 (1968).
    [CrossRef] [PubMed]
  3. A. Grumet, U.S. Patent3,779,492 (Dec.1972).
  4. H.-K. Liu, J. G. Duthie, Appl. Opt. 21, 3278 (1982).
    [CrossRef] [PubMed]
  5. J. J. Murray, R. E. Maurer, Semicond. Prod. 5, 30 (1962).
  6. P. A. Newman, V. E. Rible, Appl. Opt. 5, 1225 (1966).
    [CrossRef] [PubMed]
  7. W. J. Tabor, Appl. Opt. 6, 1275 (1967).
    [CrossRef] [PubMed]
  8. S. Lu, Proc. IEEE 56, 116 (1968).
    [CrossRef]
  9. H. K. Liu, U.S. Patents4,262,070 (4Apr.1981) andH. K. Liu, U.S. Patents4,278,755 (14July1981).
  10. B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
    [CrossRef] [PubMed]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  12. J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979);K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
    [CrossRef]
  13. J. R. Leger, S. H. Lee, Appl. Opt. 21, 274 (1982).
    [CrossRef] [PubMed]

1982 (2)

1979 (2)

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979);K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
[CrossRef] [PubMed]

1968 (2)

1967 (1)

1966 (1)

1963 (1)

W. E. Rudge, W. E. Harding, W. E. Mutter, IBM J. Res. Dev. 2, 146 (1963).
[CrossRef]

1962 (1)

J. J. Murray, R. E. Maurer, Semicond. Prod. 5, 30 (1962).

Chang, B. J.

Duthie, J. G.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Groh, G.

Grumet, A.

A. Grumet, U.S. Patent3,779,492 (Dec.1972).

Harding, W. E.

W. E. Rudge, W. E. Harding, W. E. Mutter, IBM J. Res. Dev. 2, 146 (1963).
[CrossRef]

Lee, S. H.

Leger, J. R.

Leib, K.

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979);K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Leonard, C. D.

Liu, H. K.

H. K. Liu, U.S. Patents4,262,070 (4Apr.1981) andH. K. Liu, U.S. Patents4,278,755 (14July1981).

Liu, H.-K.

Lu, S.

S. Lu, Proc. IEEE 56, 116 (1968).
[CrossRef]

Maurer, R. E.

J. J. Murray, R. E. Maurer, Semicond. Prod. 5, 30 (1962).

Mendelsohn, J.

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979);K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Murray, J. J.

J. J. Murray, R. E. Maurer, Semicond. Prod. 5, 30 (1962).

Mutter, W. E.

W. E. Rudge, W. E. Harding, W. E. Mutter, IBM J. Res. Dev. 2, 146 (1963).
[CrossRef]

Newman, P. A.

Rible, V. E.

Rudge, W. E.

W. E. Rudge, W. E. Harding, W. E. Mutter, IBM J. Res. Dev. 2, 146 (1963).
[CrossRef]

Tabor, W. J.

Wohlers, M.

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979);K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Appl. Opt. (6)

IBM J. Res. Dev. (1)

W. E. Rudge, W. E. Harding, W. E. Mutter, IBM J. Res. Dev. 2, 146 (1963).
[CrossRef]

Proc. IEEE (1)

S. Lu, Proc. IEEE 56, 116 (1968).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Mendelsohn, M. Wohlers, K. Leib, Proc. Soc. Photo-Opt. Instrum. Eng. 186, 190 (1979);K. G. Leib, R. A. Bondurant, M. R. Wohlers, Opt. Eng. 19, 414 (1980).
[CrossRef]

Semicond. Prod. (1)

J. J. Murray, R. E. Maurer, Semicond. Prod. 5, 30 (1962).

Other (3)

H. K. Liu, U.S. Patents4,262,070 (4Apr.1981) andH. K. Liu, U.S. Patents4,278,755 (14July1981).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

A. Grumet, U.S. Patent3,779,492 (Dec.1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical system diagram for making a multifocus hololens: S, specific 2-D contact screen with aperture Ds; L1, Fourier transform lens with focal length f1 and aperture D1; P1, spectra and filtering plane; L2, imaging lens with focal length f2 and aperture D2; P3, image of filtered spectra at P1; P2, plane forming hololens with central focal length fH and aperture DH. (b) Geometrical optical path diagram for analysis of the parameters of the multifocus hololens used in recording a Vander Lugt filter at Pf. Reference beam is not shown. I, input pattern with maximum spatial frequency νi and aperture Di; LH, multifocus hololens with central focal length fH and aperture; D H = A B ¯; θ, maximum diffraction angle, θνi λ; ϕ, diffraction angle relating to the farthest spectrum island M; aH, distance between any two nearest neighbor spectra islands.

Fig. 2
Fig. 2

Twenty-five spectra islands and 25 images formed by the 25-focus hololens: P0, input pattern; LH, 25-focus hololens with central focal length fH; Pf, 25 spectra islands; Pi, 25 images; distances SH and S H satisfy 1 / S H + 1 / S H = 1 / f H.

Fig. 3
Fig. 3

Multiple-image reconstruction by the 25-focus dichromated gelatin hololens: (a) 25-focus at the focal plane of the hololens; (b) input image at P0 of Fig. 2; representative reconstructed images (Pi of Fig. 2) of various diffraction orders are also shown; (c) (0,0); (d) (0,1); (e) (0,2); (f) (1,1); (g) (1,2); and (h) the (2,2)th order.

Fig. 4
Fig. 4

Multiple-image reconstruction using the 25-focus dichro-mated gelatin hololens with an input transparency of characters 25 FOCI DGHOLO LENS.

Fig. 5
Fig. 5

Diagram of a real-time multichannel multiple-image coherent optical correlator: LCLV, Hughes liquid crystal light valve; BS, beam splitter; A, analyzer; LH, multifocus hololens; H, holographic matched filter.

Fig. 6
Fig. 6

(a) Photomicrograph of one of the focal points of the matched filter of the 25-focus hololens; (b) photomicrograph of the Fourier spectrum of the same focal point of the matched filter with a map of the city of Huntsville, Ala. as its input.

Fig. 7
Fig. 7

Correlation signal outputs resulted from the matched filter being used in a real-time correlator: (a) one of the 25 outputs due to one of the 25 spectra; (b) combined output. Same input image was used for recording all 25 spectra.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

D s f 1 = A 2 B 2 ¯ d 2 o ,
a d 2 o = a H d 2 i ,
A 2 B 2 ¯ d 2 i = D H f H .
a D s λ f 1 = a H D H λ f H ,
ν s = a / ( f 1 λ ) ,
ν H a H / ( f H λ ) .
tan ϕ = M a H f H ,
tan ( ϕ 2 θ ) = ( M 1 ) a H f H .
2 θ 2 ν i λ a H f H , a H 2 ν i λ f H ,
ν H 2 ν i .
ν s D s = ν H D H = 2 ν i D i .
( SBP ) i 2 ν x i 2 ν y i π ( D i / 2 ) 2 = π ν i 2 D i 2 ,
( SBP ) H 2 ( ν x H 2 ) 2 ( ν y H 2 ) π ( D H 2 ) 2 = π ν H M 2 D H 2 = π 4 ν H 2 D H 2 ,
| ( ν x H 2 ) | = | ( ν y H 2 ) | = ν H 2 .
( SBP ) s 2 ( ν x s 2 ) 2 ( ν y s 2 ) π ( D s 2 ) 2 = π 4 ν s 2 D s 2 ,
( SBP ) H = π ν i 2 D i 2 .
( SBP ) s = π 4 ν H 2 D H 2 = π ν i 2 D i 2 .
( SBP ) s = ( SBP ) H = ( SBP ) i .
a a H = f 2 f H .
f 2 = f 1 ν s ν H .
D 1 = D s + ( N 1 ) 2 a ,
D 2 = ( D H / f H ) d 2 i + ( N 1 ) 2 a ,
d 2 i = f 2 + f H ,
d 20 = ( f 2 / f H ) d 2 i .

Metrics