Abstract

In this paper, we introduce another modification in the technique for making rainbow holograms based upon synthesization of a modulation equivalent to a slit in the objective wave. It has been demonstrated that the plane of localization of the synthesized aperture can be positioned anywhere with respect to the object by using a properly shaped illuminating wave. Thus the object itself rather than its real image is directly responsible for the rainbow hologram formation making the imaging lens unnecessary. A converging or a diverging spherical wave is required to illuminate the object transparency backed by a ground glass. The image reconstruction takes place in accordance with the conventional rainbow holographic process, with the synthesized aperture occupying the plane of convergence or divergence of the object wave as the case may be.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).
  2. H. Chen, F. T. S. Yu, Opt. Lett. 2, 85 (1978).
    [CrossRef] [PubMed]
  3. C. P. Grover, H. Van Driel, J. Opt. Soc. Am. 70, 335 (1980).
    [CrossRef]
  4. In general the technique is applicable to 3-D objects. However, recently G.-C. Chen et al. applied this technique to record holograms of 3-D objects in their presentation at the Annual Meeting of the Optical Society of America, Tucson, Ariz. (1982), paper FS2[J. Opt. Soc. Am. 72, 1830A (1982)].
  5. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).
    [CrossRef]
  6. P. F. Mueller, Appl. Opt. 8, 2051 (1969).
    [CrossRef] [PubMed]
  7. C. P. Grover, Opt. Commun. 6, 258 (1972).
    [CrossRef]
  8. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 504.
  9. R. A. Lessard, S. C. Som, A. Boivin, Appl. Opt. 12, 2009 (1973).
    [CrossRef] [PubMed]
  10. P. Hariharan, W. H. Steel, Z. S. Hegedus, Opt. Lett. 1, 8 (1977).
    [CrossRef] [PubMed]
  11. C. P. Grover, R. Tremblay, Appl. Opt. 19, 3044 (1980).
    [CrossRef] [PubMed]
  12. P. N. Tamura, Appl. Opt. 17, 2532 (1978).
    [PubMed]
  13. J. C. Wyant, Opt. Lett. 1, 130 (1977).
    [CrossRef] [PubMed]
  14. E. N. Leith, H. Chen, Opt. Lett. 2, 82 (1978).
    [CrossRef] [PubMed]
  15. H. Chen, Appl. Opt. 17, 3290 (1978).
    [CrossRef] [PubMed]

1980 (2)

1978 (4)

1977 (2)

1973 (1)

1972 (1)

C. P. Grover, Opt. Commun. 6, 258 (1972).
[CrossRef]

1969 (2)

P. F. Mueller, Appl. Opt. 8, 2051 (1969).
[CrossRef] [PubMed]

S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).

1964 (1)

Benton, S. A.

S. A. Benton, J. Opt. Soc. Am. 59, 1545A (1969).

Boivin, A.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 504.

Chen, G.-C.

In general the technique is applicable to 3-D objects. However, recently G.-C. Chen et al. applied this technique to record holograms of 3-D objects in their presentation at the Annual Meeting of the Optical Society of America, Tucson, Ariz. (1982), paper FS2[J. Opt. Soc. Am. 72, 1830A (1982)].

Chen, H.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 504.

Grover, C. P.

Hariharan, P.

Hegedus, Z. S.

Leith, E. N.

Lessard, R. A.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 504.

Mueller, P. F.

Som, S. C.

Steel, W. H.

Tamura, P. N.

Tremblay, R.

Upatnieks, J.

Van Driel, H.

Wyant, J. C.

Yu, F. T. S.

Appl. Opt. (5)

J. Opt. Soc. Am. (3)

Opt. Commun. (1)

C. P. Grover, Opt. Commun. 6, 258 (1972).
[CrossRef]

Opt. Lett. (4)

Other (2)

In general the technique is applicable to 3-D objects. However, recently G.-C. Chen et al. applied this technique to record holograms of 3-D objects in their presentation at the Annual Meeting of the Optical Society of America, Tucson, Ariz. (1982), paper FS2[J. Opt. Soc. Am. 72, 1830A (1982)].

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 504.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Lensless one-step rainbow hologram recording arrangement: converging object-wave configuration G, ground glass; O, object; H, photographic plate (hologram); R, reference wave; θ, angle between object and reference waves; P1(x1,y1), object plane; P2(x2,y2), hologram plane; P3(x3,y3), plane of convergence of the object wave; Z12, distance between planes P 1 and P2;Z23, distance between planes P2 and P3.

Fig. 2
Fig. 2

Image reconstruction from the hologram of Fig. 1 using original reference wave: H, hologram; R, original reference wave; Oυ, virtual image of the object; SR, real image of the synthesized aperture shown in plane P3 by the central order of the sinc function.

Fig. 3
Fig. 3

Black and white photograph of the reconstructed images from the converging object wave hologram illuminated in white light in the direction of (a) original reference wave and (b) conjugate wave.

Fig. 4
Fig. 4

Black and white photograph of the reconstructed image from the diverging object-wave hologram illuminated in white light in the direction of (a) original reference wave and (b) conjugate wave.

Fig. 5
Fig. 5

Bandwidth of pseudocolor encoded images: P4, plane of observation; Z34, distance between the observation plane and the plane of the synthesized aperture; h, width of the object element.

Fig. 6
Fig. 6

Pseudocolor encoded reconstructed image corresponding to the recording reconstruction setups of Figs. 1 and 2 respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F ( x 3 , y 3 ) sinc ( y 3 η 0 λ Z 13 ) ,
Δ λ = Z 34 ( Z 12 + Z 23 + Z 34 ) Z 23 h λ ¯ tan θ ,
α λ = ω Z 12 Z 23 ,

Metrics