Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable VUV light generation for the low-level resonant ionization detection of krypton

Not Accessible

Your library or personal account may give you access

Abstract

High-power tunable VUV light pulses with energies up to 0.7 μJ were generated in the 115.7–116.9-nm region by use of a two-photon resonant four-wave mixing scheme in a Xe–Ar gas mixture. This is the highest reported pulse energy that has been produced in this wavelength region using a four-wave mixing process. Efficient detection of krypton isotopes at densities as low as 10 atoms/cm3 was demonstrated by resonantly ionizing the atom through its one-photon allowed state at the vacuum wavelength of 116.49 nm.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Trace detection of krypton using laser-induced fluorescence

C. A. Whitehead, B. D. Cannon, and J. F. Wacker
Appl. Opt. 34(18) 3250-3256 (1995)

Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy

Gregory W. Faris, Scott A. Meyer, Mark J. Dyer, and Michael J. Banks
J. Opt. Soc. Am. B 17(11) 1856-1866 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved