Abstract

A time of flight method is suggested for measuring distances in large manipulator range-finding applications. Light pulses of a SH laser diode are used. Special attention was paid to reducing the pulse amplitude variations in the transit time measurement. Preliminary results with a prototype have proved the method to be highly usable in measuring position, orientation, and shape of the objects within a 1.5–10-m range. The resolution of the distance measurement is ±1 mm with a measuring time of 10 msec.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Jarvis, IEEE Comput. COM-15, 8 (1982).
    [CrossRef]
  2. G. B. Porter, J. L. Mundy, Proc. Soc. Photo-Opt. Instrum. Eng. 336, 67 (1982).
  3. T. Hasegawa, IEEE Trans. Syst. Man Cybern. SMC-12, 250 (1982).
    [CrossRef]
  4. J. M. Tenenbaum, H. D. Barrow, R. C. Bolles, “Prospects for Industrial Vision,” in Computer Vision and Sensor-based Robots (Plenum, New York, 1979), pp. 239–259.
    [CrossRef]
  5. D. E. Smith, Hewlett-Packard J., 31, No. 6, 3 (June1980).
  6. G. Kompa, “Laser-Entfernungsmesser hoher Genauigkeit für den industriellen Einsatz,” in Conference Proceedings, Laser 79 Opto-Electronics, Munich, 2 July 1979.

1982

R. A. Jarvis, IEEE Comput. COM-15, 8 (1982).
[CrossRef]

G. B. Porter, J. L. Mundy, Proc. Soc. Photo-Opt. Instrum. Eng. 336, 67 (1982).

T. Hasegawa, IEEE Trans. Syst. Man Cybern. SMC-12, 250 (1982).
[CrossRef]

1980

D. E. Smith, Hewlett-Packard J., 31, No. 6, 3 (June1980).

Barrow, H. D.

J. M. Tenenbaum, H. D. Barrow, R. C. Bolles, “Prospects for Industrial Vision,” in Computer Vision and Sensor-based Robots (Plenum, New York, 1979), pp. 239–259.
[CrossRef]

Bolles, R. C.

J. M. Tenenbaum, H. D. Barrow, R. C. Bolles, “Prospects for Industrial Vision,” in Computer Vision and Sensor-based Robots (Plenum, New York, 1979), pp. 239–259.
[CrossRef]

Hasegawa, T.

T. Hasegawa, IEEE Trans. Syst. Man Cybern. SMC-12, 250 (1982).
[CrossRef]

Jarvis, R. A.

R. A. Jarvis, IEEE Comput. COM-15, 8 (1982).
[CrossRef]

Kompa, G.

G. Kompa, “Laser-Entfernungsmesser hoher Genauigkeit für den industriellen Einsatz,” in Conference Proceedings, Laser 79 Opto-Electronics, Munich, 2 July 1979.

Mundy, J. L.

G. B. Porter, J. L. Mundy, Proc. Soc. Photo-Opt. Instrum. Eng. 336, 67 (1982).

Porter, G. B.

G. B. Porter, J. L. Mundy, Proc. Soc. Photo-Opt. Instrum. Eng. 336, 67 (1982).

Smith, D. E.

D. E. Smith, Hewlett-Packard J., 31, No. 6, 3 (June1980).

Tenenbaum, J. M.

J. M. Tenenbaum, H. D. Barrow, R. C. Bolles, “Prospects for Industrial Vision,” in Computer Vision and Sensor-based Robots (Plenum, New York, 1979), pp. 239–259.
[CrossRef]

Hewlett-Packard J.

D. E. Smith, Hewlett-Packard J., 31, No. 6, 3 (June1980).

IEEE Comput.

R. A. Jarvis, IEEE Comput. COM-15, 8 (1982).
[CrossRef]

IEEE Trans. Syst. Man Cybern.

T. Hasegawa, IEEE Trans. Syst. Man Cybern. SMC-12, 250 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

G. B. Porter, J. L. Mundy, Proc. Soc. Photo-Opt. Instrum. Eng. 336, 67 (1982).

Other

J. M. Tenenbaum, H. D. Barrow, R. C. Bolles, “Prospects for Industrial Vision,” in Computer Vision and Sensor-based Robots (Plenum, New York, 1979), pp. 239–259.
[CrossRef]

G. Kompa, “Laser-Entfernungsmesser hoher Genauigkeit für den industriellen Einsatz,” in Conference Proceedings, Laser 79 Opto-Electronics, Munich, 2 July 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Electrical block diagram of the range finder.

Fig. 2
Fig. 2

Photograph of the range finder. The sight (top), receiver (middle), and transmitter (bottom) are mounted on the right side of the base plate; the left side is for electronics.

Fig. 3
Fig. 3

Effect of variations of the pulse amplitude on the range data.

Fig. 4
Fig. 4

Curves of three sample objects representing the deviations from the fitted straight line to the range data of the brick as a function of the measured interval.

Fig. 5
Fig. 5

Amplitude variations of the received light pulses caused by the 1–11-m distance range for different materials (a) and schematic diagram of the range finder optics (b).

Fig. 6
Fig. 6

Positional accuracy in the 3.5–4.5-m range interval with 5-cm step size (a) and in the 3.5–3.7-m interval with 1-cm step size (b).

Fig. 7
Fig. 7

Observed range data for the convex and concave corner on the target surface when the target was moved over the laser beam step by step (step size, 1 cm).

Fig. 8
Fig. 8

Observed range data for cylinder target when it was moved over the laser beam in the vertical and horizontal directions.

Fig. 9
Fig. 9

Profile measurement for the target with source and birch logs fastened on a wooden plate.

Fig. 10
Fig. 10

Profile measurement for the brick lying on a wooden plate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P B = M × Ω r × A r × Δ λ × T r ( T a δ π + 1 4 π ) ,
P T = P s π × R 2 A r T r T t

Metrics