Abstract

A Monte Carlo method has been developed to simulate the performance of luminescent solar collectors (LSC) consisting of a PMMA plate with an attached film (or multiple-film stack) of dye-activated PMMA. Rhodamine 6G and Fluorol 555 have been considered as dopant dyes. Direct and diffuse solar spectra have been simulated in order to compare extreme insolation conditions. Efficiency factors have been determined as a function of the main geometrical and optical parameters of the LSC.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Hermann, Sol. Energy 29, 323 (1982).
    [CrossRef]
  2. R. Resfield, C. K. Jorgensen, Struct. Bonding Berlin 49, 1 (1982).
    [CrossRef]
  3. W. H. Weber, J. Lambe, Appl. Opt. 15, 2299 (1976).
    [CrossRef] [PubMed]
  4. J. S. Batchelder, A. H. Zewail, T. Cole, Appl. Opt. 18, 3090 (1979).
    [CrossRef] [PubMed]
  5. J. S. Batchelder, A. H. Zewail, T. Cole, Appl. Opt. 20, 3733 (1981).
    [CrossRef] [PubMed]
  6. R. W. Olson, R. F. Loring, M. D. Fayer, Appl. Opt. 20, 2934 (1981).
    [CrossRef] [PubMed]
  7. J. M. Drake, M. L. Lesiecki, J. Sansregret, W. R. L. Thomas, Appl. Opt. 21, 2945 (1982).
    [CrossRef] [PubMed]
  8. A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.
  9. J. Sansregret, J. M. Drake, W. R. L. Thomas, M. L. Lesiecki, Appl. Opt. 22, 573 (1983).
    [CrossRef] [PubMed]
  10. K. Heidler, A. Goetzberger, V. Wittwer, in Proceedings, Fourth E.C. Photovoltaic Solar Energy Conference, Stresa, Italy (1982).
  11. W. Palz, Solar Electricity (Butterworth, London, 1978).
  12. M. L. Lesiecki, J. M. Drake, Appl. Opt. 21, 557 (1982).
    [CrossRef] [PubMed]
  13. A. Goetzberger, Appl. Phys. 16, 399 (1978).
    [CrossRef]
  14. J. R. Mallinson, P. T. Landsberg, Proc. R. Soc. London Ser. A 355, 115 (1977).
    [CrossRef]
  15. N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).
  17. K. Heidler, Appl. Opt. 20, 773 (1981).
    [CrossRef] [PubMed]
  18. F. Grum, G. W. Luckey, Appl. Opt. 7, 2289 (1968).
    [CrossRef] [PubMed]

1983

1982

1981

1979

1978

A. Goetzberger, Appl. Phys. 16, 399 (1978).
[CrossRef]

1977

J. R. Mallinson, P. T. Landsberg, Proc. R. Soc. London Ser. A 355, 115 (1977).
[CrossRef]

1976

1968

Batchelder, J. S.

Baur, G.

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).

Buslenko, N. P.

N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).

Cole, T.

Drake, J. M.

Fayer, M. D.

Goetzberger, A.

A. Goetzberger, Appl. Phys. 16, 399 (1978).
[CrossRef]

K. Heidler, A. Goetzberger, V. Wittwer, in Proceedings, Fourth E.C. Photovoltaic Solar Energy Conference, Stresa, Italy (1982).

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

Golenzo, D. I.

N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).

Grum, F.

Heidler, K.

K. Heidler, Appl. Opt. 20, 773 (1981).
[CrossRef] [PubMed]

K. Heidler, A. Goetzberger, V. Wittwer, in Proceedings, Fourth E.C. Photovoltaic Solar Energy Conference, Stresa, Italy (1982).

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

Hermann, A. M.

A. M. Hermann, Sol. Energy 29, 323 (1982).
[CrossRef]

Jorgensen, C. K.

R. Resfield, C. K. Jorgensen, Struct. Bonding Berlin 49, 1 (1982).
[CrossRef]

Lambe, J.

Landsberg, P. T.

J. R. Mallinson, P. T. Landsberg, Proc. R. Soc. London Ser. A 355, 115 (1977).
[CrossRef]

Lesiecki, M. L.

Loring, R. F.

Luckey, G. W.

Mallinson, J. R.

J. R. Mallinson, P. T. Landsberg, Proc. R. Soc. London Ser. A 355, 115 (1977).
[CrossRef]

Olson, R. W.

Palz, W.

W. Palz, Solar Electricity (Butterworth, London, 1978).

Resfield, R.

R. Resfield, C. K. Jorgensen, Struct. Bonding Berlin 49, 1 (1982).
[CrossRef]

Sah, E.

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

Sansregret, J.

Shreider, N. A.

N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).

Sobol, I. M.

N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).

Sragovich, V. G.

N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).

Thomas, W. R. L.

Weber, W. H.

Wittwer, V.

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

K. Heidler, A. Goetzberger, V. Wittwer, in Proceedings, Fourth E.C. Photovoltaic Solar Energy Conference, Stresa, Italy (1982).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).

Zastrow, A.

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

Zewail, A. H.

Appl. Opt.

Appl. Phys.

A. Goetzberger, Appl. Phys. 16, 399 (1978).
[CrossRef]

Proc. R. Soc. London Ser. A

J. R. Mallinson, P. T. Landsberg, Proc. R. Soc. London Ser. A 355, 115 (1977).
[CrossRef]

Sol. Energy

A. M. Hermann, Sol. Energy 29, 323 (1982).
[CrossRef]

Struct. Bonding Berlin

R. Resfield, C. K. Jorgensen, Struct. Bonding Berlin 49, 1 (1982).
[CrossRef]

Other

A. Goetzberger, K. Heidler, V. Wittwer, A. Zastrow, G. Baur, E. Sah, in Proceedings, Second E. C. Photovoltaic Solar Energy Conference, Berlin (1979), p. 515.

N. P. Buslenko, D. I. Golenzo, N. A. Shreider, I. M. Sobol, V. G. Sragovich, The Monte Carlo Method (Pergamon, London, 1967).

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).

K. Heidler, A. Goetzberger, V. Wittwer, in Proceedings, Fourth E.C. Photovoltaic Solar Energy Conference, Stresa, Italy (1982).

W. Palz, Solar Electricity (Butterworth, London, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a LSC, showing the path of a useful light ray. P is the point of incidence of the solar ray, and Q is the point where it is absorbed and reemitted by the dye (λ changes to λ′). Geometrical parameters are indicated on the figure.

Fig. 2
Fig. 2

Dependence of electrical collector efficiency ηrel (Δ) and effective concentration factor G (○) on collector side length L for a collector with a diffuser showing strictly Lambertian behavior. The G values for a collector with isotropic (non-Lambertian) reflectance are also included (●). For both cases, plate thickness d = 0.6 cm.

Fig. 3
Fig. 3

Dependence of ηrel and G for rhodamine 6G and Fluorol 555 activated LSC: (a) direct and (b) diffuse illumination.

Fig. 4
Fig. 4

Dependence of G on collector thickness d for rhodamine 6G and Fluorol 555 activated LSC: (a) direct and (b) diffuse illumination.

Fig. 5
Fig. 5

Dependence of ηrel and G on the absorbance of the film for both rhodamine 6G and Fluorol 555 activated LSC. Data for direct and diffuse insolation are included.

Fig. 6
Fig. 6

Histograms corresponding to the useful input spectrum [curve (1)] and effective output spectrum [curve (2)] for a Fluorol 555 activated LSC under direct illumination. The absorption [curve (3)] and emission [curve (4)] spectra are also shown. The dye absorbance is A ≡ 3.

Fig. 7
Fig. 7

Histograms corresponding to the useful input spectrum [curve (1)] and effective output spectrum [curve (2)] for a LSC having two films, respectively, activated with Fluorol 555 and rhodamine 6G and operating under direct illumination. Absorption and luminescence spectra for the two dyes are curves (a) and (b), respectively (d = 0.4 cm).

Tables (3)

Tables Icon

Table I Efficiency Factors for Reasonable Optimum Collectors Working Two Extreme Insolation Conditions a

Tables Icon

Table II Relative Contribution of the Various Loss Processes Expressed in Percent a

Tables Icon

Table III Dependence of the Effective Concentration Factor G on Quantum Yield ηq and Degree of Overlapping as Determined by the Wavelength of the Peak (nm) in the Emission Band (see Text); Data Refer to a Single-Film Fluorol 555-Activated LSC

Metrics