Abstract

In this paper we discuss the properties of optical elements fabricated by holographically recording an ultrahigh spatial-frequency pattern in a photoresist mask followed by reactive ion etching to transfer this pattern into the surface of a quartz substrate. Such optical elements are environmentally durable, potentially easy to replicate, and exhibit diffraction efficiencies in excess of 85%. In addition, two other properties are reported for the first time. Such elements at normal (0°) incidence are antireflective, with broadband reflection coefficients as low as 0.035%. Also, the elements exhibit artificially produced birefringence making them useful as wave plates. These results may be particularly significant in the UV and IR, where damage-resistant antireflection coatings and transparent birefringent materials may not exist.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Moharam, T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982);erratum 73, 411 (1983).
    [CrossRef]
  2. C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng.390, to be published.
  3. R. C. Enger, S. K. Case, J. Opt. Soc. Am. 73, 1113 (1983).
    [CrossRef]
  4. D. H. Close, Opt. Eng. 14, 408 (1975).
    [CrossRef]
  5. C. W. Chen, Opt. Eng. 19, 649 (1980).
    [CrossRef]
  6. I. Weingartner, K. J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng. 163, 73 (1979).
  7. S. D. Fantone, Appl. Opt. 22, 1121 (1983).
    [CrossRef] [PubMed]
  8. D. J. McMahon, A. R. Franklin, J. B. Thaxter, Appl. Opt. 8, 399 (1969).
    [CrossRef]
  9. L. A. Jenkins, R. R. August, D. B. Anderson, “Holographically Prepared Gratings for Integrated Optics,” Rockwell International Corp. 55 (1974).
  10. A. Yi-Yan, J. A. Wilkinson, C. D. Wilkinson, Proc. Inst. Electr. Eng. Part H. 127, 335 (1980).
  11. L. F. Johnson, Appl. Opt. 18, 2559 (1979).
    [CrossRef] [PubMed]
  12. P. D. DeGraff, D. C. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).
    [CrossRef]
  13. D. Heflinger, J. Kirk, R. Cordero, G. Evans, Opt. Eng. 21, 537 (1982).
    [CrossRef]
  14. N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
    [CrossRef]
  15. S. Matsui, K. Moriwaki, H. Aritome, S. Namba, S. Shin, S. Suga, Appl. Opt. 21, 2787 (1982).
    [CrossRef] [PubMed]
  16. J. J. Hanak, J. P. Russell, RCA Rev. 32, 319 (1971).
  17. Shipley Technical Data 1300A and D-1400A, Shipley Co., Newton, Mass. 02162.
  18. B. Crane, U.S. Air Force Academy; 12May1983; private communication.
  19. R. C. Enger, Ph.D. Thesis, University of Minnesota (Xerox University Microfilms, Ann Arbor, Mich., 1983).
  20. R. C. Weast, Ed. Handbook of Chemistry and Physics (CRC Press, Cleveland, 1948).
  21. D. Chen, Optical Peripherals, Colorado Springs, Colo; March1983; private communication.
  22. R. Kastner, R. Mittra, IEEE Trans. Antennas Propag. AP-30, 673 (1982).
    [CrossRef]
  23. J. Hanfling, G. Jerinic, L. Lewis, IEEE Trans. Antennas Propag. AP-29, 622 (1981).
    [CrossRef]
  24. K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
    [CrossRef]
  25. J. M. Moran, D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979).
    [CrossRef]

1983 (2)

1982 (4)

1981 (2)

J. Hanfling, G. Jerinic, L. Lewis, IEEE Trans. Antennas Propag. AP-29, 622 (1981).
[CrossRef]

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

1980 (2)

A. Yi-Yan, J. A. Wilkinson, C. D. Wilkinson, Proc. Inst. Electr. Eng. Part H. 127, 335 (1980).

C. W. Chen, Opt. Eng. 19, 649 (1980).
[CrossRef]

1979 (5)

I. Weingartner, K. J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng. 163, 73 (1979).

L. F. Johnson, Appl. Opt. 18, 2559 (1979).
[CrossRef] [PubMed]

P. D. DeGraff, D. C. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).
[CrossRef]

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

J. M. Moran, D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979).
[CrossRef]

1975 (1)

D. H. Close, Opt. Eng. 14, 408 (1975).
[CrossRef]

1974 (1)

L. A. Jenkins, R. R. August, D. B. Anderson, “Holographically Prepared Gratings for Integrated Optics,” Rockwell International Corp. 55 (1974).

1971 (1)

J. J. Hanak, J. P. Russell, RCA Rev. 32, 319 (1971).

1969 (1)

Anderson, D. B.

L. A. Jenkins, R. R. August, D. B. Anderson, “Holographically Prepared Gratings for Integrated Optics,” Rockwell International Corp. 55 (1974).

Aritome, H.

August, R. R.

L. A. Jenkins, R. R. August, D. B. Anderson, “Holographically Prepared Gratings for Integrated Optics,” Rockwell International Corp. 55 (1974).

Bezjian, K.

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

Case, S. K.

Chen, C. W.

C. W. Chen, Opt. Eng. 19, 649 (1980).
[CrossRef]

Chen, D.

D. Chen, Optical Peripherals, Colorado Springs, Colo; March1983; private communication.

Close, D. H.

D. H. Close, Opt. Eng. 14, 408 (1975).
[CrossRef]

Cordero, R.

D. Heflinger, J. Kirk, R. Cordero, G. Evans, Opt. Eng. 21, 537 (1982).
[CrossRef]

Crane, B.

B. Crane, U.S. Air Force Academy; 12May1983; private communication.

Dana, S. S.

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

DeGraff, P. D.

P. D. DeGraff, D. C. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).
[CrossRef]

Economou, N. P.

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

Efremow, N. N.

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

Enger, R. C.

R. C. Enger, S. K. Case, J. Opt. Soc. Am. 73, 1113 (1983).
[CrossRef]

R. C. Enger, Ph.D. Thesis, University of Minnesota (Xerox University Microfilms, Ann Arbor, Mich., 1983).

Evans, G.

D. Heflinger, J. Kirk, R. Cordero, G. Evans, Opt. Eng. 21, 537 (1982).
[CrossRef]

Fantone, S. D.

Flanders, D. C.

P. D. DeGraff, D. C. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).
[CrossRef]

Franklin, A. R.

Gaylord, T. K.

Hanak, J. J.

J. J. Hanak, J. P. Russell, RCA Rev. 32, 319 (1971).

Hanfling, J.

J. Hanfling, G. Jerinic, L. Lewis, IEEE Trans. Antennas Propag. AP-29, 622 (1981).
[CrossRef]

Heflinger, D.

D. Heflinger, J. Kirk, R. Cordero, G. Evans, Opt. Eng. 21, 537 (1982).
[CrossRef]

Jenkins, L. A.

L. A. Jenkins, R. R. August, D. B. Anderson, “Holographically Prepared Gratings for Integrated Optics,” Rockwell International Corp. 55 (1974).

Jerinic, G.

J. Hanfling, G. Jerinic, L. Lewis, IEEE Trans. Antennas Propag. AP-29, 622 (1981).
[CrossRef]

Johnson, L. F.

Kastner, R.

R. Kastner, R. Mittra, IEEE Trans. Antennas Propag. AP-30, 673 (1982).
[CrossRef]

Kirk, J.

D. Heflinger, J. Kirk, R. Cordero, G. Evans, Opt. Eng. 21, 537 (1982).
[CrossRef]

Kramer, C. J.

C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng.390, to be published.

Lewis, L.

J. Hanfling, G. Jerinic, L. Lewis, IEEE Trans. Antennas Propag. AP-29, 622 (1981).
[CrossRef]

Matsui, S.

Maydan, D.

J. M. Moran, D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979).
[CrossRef]

McMahon, D. J.

Mittra, R.

R. Kastner, R. Mittra, IEEE Trans. Antennas Propag. AP-30, 673 (1982).
[CrossRef]

Moharam, M. G.

Moran, J. M.

J. M. Moran, D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979).
[CrossRef]

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

Moriwaki, K.

Namba, S.

Rand, M. J.

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

Rosenbruch, K. J.

I. Weingartner, K. J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng. 163, 73 (1979).

Russell, J. P.

J. J. Hanak, J. P. Russell, RCA Rev. 32, 319 (1971).

Shin, S.

Sinclair, W. R.

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

Smith, H. I.

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

Suga, S.

Tai, K. L.

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

Thaxter, J. B.

Vadimsky, R. G.

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

Weingartner, I.

I. Weingartner, K. J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng. 163, 73 (1979).

Wilkinson, C. D.

A. Yi-Yan, J. A. Wilkinson, C. D. Wilkinson, Proc. Inst. Electr. Eng. Part H. 127, 335 (1980).

Wilkinson, J. A.

A. Yi-Yan, J. A. Wilkinson, C. D. Wilkinson, Proc. Inst. Electr. Eng. Part H. 127, 335 (1980).

Yi-Yan, A.

A. Yi-Yan, J. A. Wilkinson, C. D. Wilkinson, Proc. Inst. Electr. Eng. Part H. 127, 335 (1980).

Appl. Opt. (4)

IEEE Trans. Antennas Propag. (2)

R. Kastner, R. Mittra, IEEE Trans. Antennas Propag. AP-30, 673 (1982).
[CrossRef]

J. Hanfling, G. Jerinic, L. Lewis, IEEE Trans. Antennas Propag. AP-29, 622 (1981).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Vac. Sci. Technol. (4)

K. L. Tai, W. R. Sinclair, R. G. Vadimsky, J. M. Moran, M. J. Rand, J. Vac. Sci. Technol. 16, 1977 (1979).
[CrossRef]

J. M. Moran, D. Maydan, J. Vac. Sci. Technol. 16, 1620 (1979).
[CrossRef]

P. D. DeGraff, D. C. Flanders, J. Vac. Sci. Technol. 16, 1906 (1979).
[CrossRef]

N. N. Efremow, N. P. Economou, K. Bezjian, S. S. Dana, H. I. Smith, J. Vac. Sci. Technol. 19, 1234 (1981).
[CrossRef]

Opt. Eng. (3)

D. Heflinger, J. Kirk, R. Cordero, G. Evans, Opt. Eng. 21, 537 (1982).
[CrossRef]

D. H. Close, Opt. Eng. 14, 408 (1975).
[CrossRef]

C. W. Chen, Opt. Eng. 19, 649 (1980).
[CrossRef]

Proc. Inst. Electr. Eng. Part H. (1)

A. Yi-Yan, J. A. Wilkinson, C. D. Wilkinson, Proc. Inst. Electr. Eng. Part H. 127, 335 (1980).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

I. Weingartner, K. J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng. 163, 73 (1979).

RCA Rev. (1)

J. J. Hanak, J. P. Russell, RCA Rev. 32, 319 (1971).

Rockwell International Corp. (1)

L. A. Jenkins, R. R. August, D. B. Anderson, “Holographically Prepared Gratings for Integrated Optics,” Rockwell International Corp. 55 (1974).

Other (6)

Shipley Technical Data 1300A and D-1400A, Shipley Co., Newton, Mass. 02162.

B. Crane, U.S. Air Force Academy; 12May1983; private communication.

R. C. Enger, Ph.D. Thesis, University of Minnesota (Xerox University Microfilms, Ann Arbor, Mich., 1983).

R. C. Weast, Ed. Handbook of Chemistry and Physics (CRC Press, Cleveland, 1948).

D. Chen, Optical Peripherals, Colorado Springs, Colo; March1983; private communication.

C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng.390, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Scanning electron micrograph (SEM) of photoresist mask. Profile is visible due to small scratch in grating. Scale: small horizontal bar at bottom of photo equals 0.1 μm.

Fig. 2
Fig. 2

Geometry used to make measurements.

Fig. 3
Fig. 3

Maximum grating efficiency vs etch depth—quartz gratings. The numbers identify the gratings (see Table I). Circle means depth was measured from SEM photo. Square means depth was calculated from birefringence data (see Sec. VIII).

Fig. 4
Fig. 4

Maximum grating efficiency vs etch depth—quartz gratings.

Fig. 5
Fig. 5

SEM photograph of quartz grating No. 1. Scale: horizontal line at bottom of photo equals 1.0 μm.

Fig. 6
Fig. 6

SEM photograph of quartz grating No. 8. Scale: horizontal line at bottom of photo equals 1.0 μm.

Fig. 7
Fig. 7

Grating reflectivity in percent (at normal incidence) versus etch depth—quartz gratings.

Fig. 8
Fig. 8

Grating reflectivity in percent (at normal incidence) versus etch depth—quartz gratings.

Fig. 9
Fig. 9

Geometry used to measure reflectivity from quartz gratings at near-normal incidence.

Fig. 10
Fig. 10

SEM photograph of grating No. 3 showing grating profile. Scale: horizontal line at bottom of photo equals 0.5 μm.

Fig. 11
Fig. 11

SEM photograph of grating No. 9 showing grating profile. Scale: horizontal line at bottom of photo equals 0.5 μm.

Fig. 12
Fig. 12

SEM photograph of grating No. 8 showing grating profile. Scale: horizontal line at bottom of photo equals 0.5 μm.

Fig. 13
Fig. 13

Reflectivity of grating No. 5 in percent vs wavelength (measured at normal incidence). The various × indicate the results of each of several measurements.

Fig. 14
Fig. 14

Optical arrangement used to make birefringence measurements.

Fig. 15
Fig. 15

Effective phase shift vs etch depth—quartz gratings.

Fig. 16
Fig. 16

Effective phase shift vs etch depth—quartz gratings.

Tables (4)

Tables Icon

Table I Quartz Grating Etching Parameters

Tables Icon

Table II Damage Resistance of Grating 3 to High-Power Laser Radiation (1006 nm)

Tables Icon

Table III Damage Resistance of Grating 6 to High-Power Laser Radiation (1006 nm)

Tables Icon

Table IV Effective Phase Change Δϕn Due to the Grating

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η = I 1 I in I R 1 .
E IN = E x exp [ j ( ω t + ϕ ) ] [ x ̂ + y ̂ ] .
E t = E x exp [ j ( ω t + ϕ + kD n x ) ] { x ̂ + exp [ j ( Δ ϕ n ) ] y ̂ } ,
Δ ϕ n = 2 π D λ 0 | n y n x | .
T p = cos θ p x ̂ + sin θ p y ̂ ,
| E out | = E t · T p = E x exp [ j ( ω t + ϕ + kD n x ) ] { cos θ p + exp [ j ( Δ ϕ n ) ] sin θ p } .
I out = E out · E out * = E x 2 [ 1 + 2 cos θ p sin θ p cos ( Δ ϕ n ) ] .
I A = | E in | 2 2 [ 1 cos ( Δ ϕ n ) ] ,
I B = | E in | 2 2 [ 1 + cos ( Δ ϕ n ) ] .
Δ ϕ n = cos 1 [ 1 R 1 + R ] ,
R = I A I B .

Metrics