Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. J. Habell, A. Cox, Engineering Optics (Pitman, London, 1948), p. 17.
  2. F. Twyman, Prism and Lens Making (Hilger, London, 1942), p. 118.

Cox, A.

K. J. Habell, A. Cox, Engineering Optics (Pitman, London, 1948), p. 17.

Habell, K. J.

K. J. Habell, A. Cox, Engineering Optics (Pitman, London, 1948), p. 17.

Twyman, F.

F. Twyman, Prism and Lens Making (Hilger, London, 1942), p. 118.

Other (2)

K. J. Habell, A. Cox, Engineering Optics (Pitman, London, 1948), p. 17.

F. Twyman, Prism and Lens Making (Hilger, London, 1942), p. 118.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Path of rays in a Dove prism.

Fig. 2
Fig. 2

Variation of error factor [(αβ)/(α + β)] with deviation δ for different angular error α.

Fig. 3
Fig. 3

Variation of angular error α with angular error β for different deviations δ.

Fig. 4
Fig. 4

Variation of angular error β with deviation δ for different angular error α.

Fig. 5
Fig. 5

Measurement of angular error α and β of a prism with (a) base polished and (b) and (c) base silvered.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin ( 45 + δ α + β ¯ ) = n sin ( k α β ¯ ) .
δ = ( α + β ) [ 1 + ( α β α + β ) ( 2 n 2 1 ) 1 / 2 ] .
δ c δ F = ( α β ) [ ( 2 n c 2 1 ) 1 / 2 ( 2 n F 2 1 ) 1 / 2 ] .
α + β = 45 + δ 1 + δ 2 2 sin 1 ( 1 B 2 A 2 B 2 ) 1 / 2 ,
α β = sin 1 ( A 2 B 2 B 2 A 2 B 2 ) 1 / 2 ,
A = 2 cos δ 1 δ 2 2 , B = 2 sin δ 1 δ 2 2 ( 2 n 2 1 ) 1 / 2 ,

Metrics