Abstract

The intensities, widths, and positions of lines of three CO2 bands near 2750 cm−1 have been determined. The results are in general agreement with other measured and estimated values.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Hoke, J. H. Shaw, Appl. Opt. 21, 929 (1982).
    [CrossRef] [PubMed]
  2. M. L. Hoke, J. H. Shaw, Appl. Opt. 21, 935 (1982).
    [CrossRef] [PubMed]
  3. L. S. Rothman, L. D. S. Young, J. Quant. Spectrosc. Radiat. Transfer 25, 505 (1981).
    [CrossRef]
  4. G. Guelachvili, J. Mol. Spectrosc. 79, 72 (1980).
    [CrossRef]
  5. B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
    [CrossRef]
  6. G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1967), Vol. 6.
  7. C. R. Anderson, D. R. Mattson, Soc. Photo-Opt. Instrum. Eng. 289, 199 (1981).
  8. M. L. Hoke, “Analysis of CO2 bands near 2600 cm−1,” Ph.D. Dissertation, Ohio State U. (1982).
  9. A. Chedin, J. Mol. Spectrosc. 76, 430 (1979).
    [CrossRef]
  10. D. L. Albritton, A. L. Schmeltekopf, R. N. Zare, “An Introduction to the Least-Squares Fitting of Spectroscopic Data,” in Modern Spectroscopy. Modern Research II, K. Narahari Rao, Ed. (Academic, New York, 1966).
  11. C. Freed, R. G. O’Donnell, Metrologia 13, 151 (1977).
    [CrossRef]
  12. R. C. Hollins, D. L. Jordan, J. Phys. B 15, L491 (1982).
    [CrossRef]
  13. P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
    [CrossRef]
  14. L. A. Pugh, “A Detailed Study of the Near Infrared Spectrum of Water Vapor,” Ph.D. Dissertation, Ohio State U. (1972).
  15. C. Camy-Peyret, J. M. Flaud, Mol. Phys. 32, 523 (1976).
    [CrossRef]
  16. R. L. Hawkins, M. L. Hoke, J. H. Shaw, “Wavenumber calibration of Fourier transform spectra,” Appl. Spectrosc. (accepted) to be published March1983.
    [CrossRef]

1982 (3)

1981 (2)

C. R. Anderson, D. R. Mattson, Soc. Photo-Opt. Instrum. Eng. 289, 199 (1981).

L. S. Rothman, L. D. S. Young, J. Quant. Spectrosc. Radiat. Transfer 25, 505 (1981).
[CrossRef]

1980 (2)

G. Guelachvili, J. Mol. Spectrosc. 79, 72 (1980).
[CrossRef]

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
[CrossRef]

1979 (1)

A. Chedin, J. Mol. Spectrosc. 76, 430 (1979).
[CrossRef]

1977 (1)

C. Freed, R. G. O’Donnell, Metrologia 13, 151 (1977).
[CrossRef]

1976 (1)

C. Camy-Peyret, J. M. Flaud, Mol. Phys. 32, 523 (1976).
[CrossRef]

1964 (1)

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Albritton, D. L.

D. L. Albritton, A. L. Schmeltekopf, R. N. Zare, “An Introduction to the Least-Squares Fitting of Spectroscopic Data,” in Modern Spectroscopy. Modern Research II, K. Narahari Rao, Ed. (Academic, New York, 1966).

Anderson, C. R.

C. R. Anderson, D. R. Mattson, Soc. Photo-Opt. Instrum. Eng. 289, 199 (1981).

Arcas, P.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
[CrossRef]

Arié, E.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
[CrossRef]

Benedict, W. S.

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Boulet, C.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
[CrossRef]

Camy-Peyret, C.

C. Camy-Peyret, J. M. Flaud, Mol. Phys. 32, 523 (1976).
[CrossRef]

Chedin, A.

A. Chedin, J. Mol. Spectrosc. 76, 430 (1979).
[CrossRef]

Flaud, J. M.

C. Camy-Peyret, J. M. Flaud, Mol. Phys. 32, 523 (1976).
[CrossRef]

Freed, C.

C. Freed, R. G. O’Donnell, Metrologia 13, 151 (1977).
[CrossRef]

Guelachvili, G.

G. Guelachvili, J. Mol. Spectrosc. 79, 72 (1980).
[CrossRef]

Hawkins, R. L.

R. L. Hawkins, M. L. Hoke, J. H. Shaw, “Wavenumber calibration of Fourier transform spectra,” Appl. Spectrosc. (accepted) to be published March1983.
[CrossRef]

Hoke, M. L.

M. L. Hoke, J. H. Shaw, Appl. Opt. 21, 929 (1982).
[CrossRef] [PubMed]

M. L. Hoke, J. H. Shaw, Appl. Opt. 21, 935 (1982).
[CrossRef] [PubMed]

M. L. Hoke, “Analysis of CO2 bands near 2600 cm−1,” Ph.D. Dissertation, Ohio State U. (1982).

R. L. Hawkins, M. L. Hoke, J. H. Shaw, “Wavenumber calibration of Fourier transform spectra,” Appl. Spectrosc. (accepted) to be published March1983.
[CrossRef]

Hollins, R. C.

R. C. Hollins, D. L. Jordan, J. Phys. B 15, L491 (1982).
[CrossRef]

Jordan, D. L.

R. C. Hollins, D. L. Jordan, J. Phys. B 15, L491 (1982).
[CrossRef]

Maillard, J. P.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
[CrossRef]

Mattson, D. R.

C. R. Anderson, D. R. Mattson, Soc. Photo-Opt. Instrum. Eng. 289, 199 (1981).

O’Donnell, R. G.

C. Freed, R. G. O’Donnell, Metrologia 13, 151 (1977).
[CrossRef]

Pugh, L. A.

L. A. Pugh, “A Detailed Study of the Near Infrared Spectrum of Water Vapor,” Ph.D. Dissertation, Ohio State U. (1972).

Rothman, L. S.

L. S. Rothman, L. D. S. Young, J. Quant. Spectrosc. Radiat. Transfer 25, 505 (1981).
[CrossRef]

Sakai, H.

G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1967), Vol. 6.

Schmeltekopf, A. L.

D. L. Albritton, A. L. Schmeltekopf, R. N. Zare, “An Introduction to the Least-Squares Fitting of Spectroscopic Data,” in Modern Spectroscopy. Modern Research II, K. Narahari Rao, Ed. (Academic, New York, 1966).

Shaw, J. H.

M. L. Hoke, J. H. Shaw, Appl. Opt. 21, 935 (1982).
[CrossRef] [PubMed]

M. L. Hoke, J. H. Shaw, Appl. Opt. 21, 929 (1982).
[CrossRef] [PubMed]

R. L. Hawkins, M. L. Hoke, J. H. Shaw, “Wavenumber calibration of Fourier transform spectra,” Appl. Spectrosc. (accepted) to be published March1983.
[CrossRef]

Silverman, S.

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Vanasse, G. A.

G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1967), Vol. 6.

Winters, B. H.

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Young, L. D. S.

L. S. Rothman, L. D. S. Young, J. Quant. Spectrosc. Radiat. Transfer 25, 505 (1981).
[CrossRef]

Zare, R. N.

D. L. Albritton, A. L. Schmeltekopf, R. N. Zare, “An Introduction to the Least-Squares Fitting of Spectroscopic Data,” in Modern Spectroscopy. Modern Research II, K. Narahari Rao, Ed. (Academic, New York, 1966).

Appl. Opt. (2)

J. Chem. Phys. (1)

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, J. Chem. Phys. 73, 5383 (1980).
[CrossRef]

J. Mol. Spectrosc. (2)

G. Guelachvili, J. Mol. Spectrosc. 79, 72 (1980).
[CrossRef]

A. Chedin, J. Mol. Spectrosc. 76, 430 (1979).
[CrossRef]

J. Phys. B (1)

R. C. Hollins, D. L. Jordan, J. Phys. B 15, L491 (1982).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

L. S. Rothman, L. D. S. Young, J. Quant. Spectrosc. Radiat. Transfer 25, 505 (1981).
[CrossRef]

Metrologia (1)

C. Freed, R. G. O’Donnell, Metrologia 13, 151 (1977).
[CrossRef]

Mol. Phys. (1)

C. Camy-Peyret, J. M. Flaud, Mol. Phys. 32, 523 (1976).
[CrossRef]

Soc. Photo-Opt. Instrum. Eng. (1)

C. R. Anderson, D. R. Mattson, Soc. Photo-Opt. Instrum. Eng. 289, 199 (1981).

Other (5)

M. L. Hoke, “Analysis of CO2 bands near 2600 cm−1,” Ph.D. Dissertation, Ohio State U. (1982).

D. L. Albritton, A. L. Schmeltekopf, R. N. Zare, “An Introduction to the Least-Squares Fitting of Spectroscopic Data,” in Modern Spectroscopy. Modern Research II, K. Narahari Rao, Ed. (Academic, New York, 1966).

G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1967), Vol. 6.

R. L. Hawkins, M. L. Hoke, J. H. Shaw, “Wavenumber calibration of Fourier transform spectra,” Appl. Spectrosc. (accepted) to be published March1983.
[CrossRef]

L. A. Pugh, “A Detailed Study of the Near Infrared Spectrum of Water Vapor,” Ph.D. Dissertation, Ohio State U. (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top: Spectrum of a 476-m path of CO2; pressure, 177 Torr; temperature, 294 K. Bottom: spectrum of a 994-m path of CO2; pressure, 741 Torr; temperature, 292 K. These are referred to as spectrum I and spectrum II, respectively.

Fig. 2
Fig. 2

Upper left: portion of spectrum II in a region where there is little line absorption. Upper right: portion of the same spectrum. Bottom: the difference between the observed and calculated values shown on an expanded scale.

Fig. 3
Fig. 3

Differences in the line positions calculated from the constants in retrieval A, Table III, and the positions calculated from the other retrievals (labeled according to the retrieval identification in Table III), including those calculated from the constants of Rothman and Young R and Chedin Ch.

Fig. 4
Fig. 4

|m| dependence of the widths of 16O12C18O lines broadened by 12C16O2 (reduced to 296 K, 760 Torr). The top curve was obtained from analysis of the 20002–0001 band at 2614 cm−1 (see Ref. 1). The bottom curve was obtained from analysis of the 20001–00001 band at 2757 cm−1.

Tables (6)

Tables Icon

Table I Band Origins, Identifications, and Intensities of CO2 Bands Betweeen 2700 and 2800 cm−1 from the Tabulation of Rothman and Young.3

Tables Icon

Table II Rotational Constants for Band I (20001–00001,628) Obtained in this Work and in Other Studies

Tables Icon

Table III Upper State Rotational Constants for Band II (20001–00001,627)

Tables Icon

Table IV Origins of CO2 Bands Between 2700 and 2800 cm−1

Tables Icon

Table V Best Estimates of the Parameters of the Winters et al.5 Model for Describing the Dependence of CO2 Linewidths on |m|

Tables Icon

Table VI Band Intensities

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α | m | = W 1 + W 2 exp ( W 3 | m | ) + W 4 | m | exp [ B | m | ( | m | 1 ) / k T ] .
α ( | m | , P , T ) = α ( | m | , P 0 , T 0 ) ( P / P 0 ) ( T 0 / T ) 1 / 2 .

Metrics