Abstract

An on-line computer system for measuring the deformation of a diffuse object with a speckle interferometer is presented. Methods for evaluating a speckle interferogram using digital image processing techniques are also discussed. The system consists of an interferometric optical setup and a computer–TV image processing facility. A speckle interferogram is generated arithmetically between two digitized speckle patterns before and after deformation of the object. The information about the deformation is extracted by two procedures in analyzing the interferogram: (a) automatic analysis using digital image processing techniques such as gray scale modification, linear spatial filtering, thresholding, and skeletoning; (b) man–machine interactive method for simple high-speed processing of the interferogram using a light pen. The determined fringe order numbers are interpolated and differentiated spatially to give strain, slope, and bending moment of the deformed object. Some examples of processed patterns are presented.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Erf, Ed., Holographic Nondestructive Testing (Academic, New York, 1974).
  2. A. E. Ennos, “Speckle Interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975), Vol. 9, pp. 203–253.
    [CrossRef]
  3. J. N. Butters, J. A. Leendertz, Opt. Laser Technol. 3, 26 (1971).
    [CrossRef]
  4. O. J. Løkberg, O. M. Holje, H. M. Pedersen, Opt. Laser Technol. 8, 17 (1976).
    [CrossRef]
  5. S. Nakadate, T. Yatagai, H. Saito, Appl. Opt. 19, 1879 (1980).
    [CrossRef] [PubMed]
  6. A. T. Glassman, C. E. Orr, Proc. Soc. Photo-Opt. Instrum. Eng. 181, 64 (1979).
  7. W. Augustyn, Proc. Soc. Photo-Opt. Instrum. Eng. 192, 128 (1979).
  8. K. H. Womack, K. L. Underwood, D. Forbes, Proc. Soc. Photo-Opt. Instrum. Eng. 230, 168 (1980).
  9. D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
    [CrossRef]
  10. M. Schlüter, A. Nowatzyk, Opt. Acta 27, 799 (1980).
    [CrossRef]
  11. S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).
  12. A. Choudry, Appl. Opt. 20, 1240 (1981).
    [CrossRef] [PubMed]
  13. Y. Seguchi, Y. Tomita, M. Watanabe, Exp. Mech. 19, 362 (1979).
    [CrossRef]
  14. G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
    [CrossRef]
  15. O. R. Mitchell, E. J. Delp, T. P. Walle, W. K. Cadwallender, in Proceedings, Fifth International Conference on Pattern Recognition, Miami, Dec. 1980 (IEEE, New York, 1979), Vol. 1, pp. 361–363.
  16. A. P. M. Hurden, Opt. Laser Technol. 14, 21 (1982).
    [CrossRef]
  17. T. Yatagai, M. Idesawa, Y. Yamaashi, M. Suzuki, in Moiré Fringe Topography and Spinal Deformity, M. S. Moreland, Ed. (Pergamon, New York, 1981), pp. 66–75.
  18. W. R. J. Funnell, Appl. Opt. 20, 3245 (1981).
    [CrossRef] [PubMed]
  19. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, Appl. Opt. 13, 2693 (1974).
    [CrossRef] [PubMed]
  20. R. Dändliker, B. Ineichen, F. M. Mottier, Opt. Commun. 9, 412 (1973).
    [CrossRef]
  21. J. W. Goodman, “Statistical Properties of Laser Speckle Pattern,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975), Vol. 9, pp. 9–75.
    [CrossRef]
  22. A. Rosenfeld, A. C. Kak, Digital Picture Processing (Academic, New York, 1976).
    [CrossRef]
  23. C. J. Hilditch, “Linear Skeleton from Square Cupboards,” in Machine Intelligence, B. Meltzer, D. Michie, Eds. (University Press, Edinburgh, 1969), Vol. 6, pp. 403–420.

1982 (1)

A. P. M. Hurden, Opt. Laser Technol. 14, 21 (1982).
[CrossRef]

1981 (2)

1980 (5)

S. Nakadate, T. Yatagai, H. Saito, Appl. Opt. 19, 1879 (1980).
[CrossRef] [PubMed]

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

M. Schlüter, A. Nowatzyk, Opt. Acta 27, 799 (1980).
[CrossRef]

S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).

K. H. Womack, K. L. Underwood, D. Forbes, Proc. Soc. Photo-Opt. Instrum. Eng. 230, 168 (1980).

1979 (4)

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

A. T. Glassman, C. E. Orr, Proc. Soc. Photo-Opt. Instrum. Eng. 181, 64 (1979).

W. Augustyn, Proc. Soc. Photo-Opt. Instrum. Eng. 192, 128 (1979).

Y. Seguchi, Y. Tomita, M. Watanabe, Exp. Mech. 19, 362 (1979).
[CrossRef]

1976 (1)

O. J. Løkberg, O. M. Holje, H. M. Pedersen, Opt. Laser Technol. 8, 17 (1976).
[CrossRef]

1974 (1)

1973 (1)

R. Dändliker, B. Ineichen, F. M. Mottier, Opt. Commun. 9, 412 (1973).
[CrossRef]

1971 (1)

J. N. Butters, J. A. Leendertz, Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Augustyn, W.

W. Augustyn, Proc. Soc. Photo-Opt. Instrum. Eng. 192, 128 (1979).

Brangaccio, D. J.

Bruning, J. H.

Butters, J. N.

J. N. Butters, J. A. Leendertz, Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Cadwallender, W. K.

O. R. Mitchell, E. J. Delp, T. P. Walle, W. K. Cadwallender, in Proceedings, Fifth International Conference on Pattern Recognition, Miami, Dec. 1980 (IEEE, New York, 1979), Vol. 1, pp. 361–363.

Choudry, A.

Dändliker, R.

R. Dändliker, B. Ineichen, F. M. Mottier, Opt. Commun. 9, 412 (1973).
[CrossRef]

Delp, E. J.

O. R. Mitchell, E. J. Delp, T. P. Walle, W. K. Cadwallender, in Proceedings, Fifth International Conference on Pattern Recognition, Miami, Dec. 1980 (IEEE, New York, 1979), Vol. 1, pp. 361–363.

Ennos, A. E.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

A. E. Ennos, “Speckle Interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975), Vol. 9, pp. 203–253.
[CrossRef]

Forbes, D.

K. H. Womack, K. L. Underwood, D. Forbes, Proc. Soc. Photo-Opt. Instrum. Eng. 230, 168 (1980).

Funnell, W. R. J.

Gale, B.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Gallagher, J. E.

Glassman, A. T.

A. T. Glassman, C. E. Orr, Proc. Soc. Photo-Opt. Instrum. Eng. 181, 64 (1979).

Goodman, J. W.

J. W. Goodman, “Statistical Properties of Laser Speckle Pattern,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975), Vol. 9, pp. 9–75.
[CrossRef]

Herriott, D. R.

Hilditch, C. J.

C. J. Hilditch, “Linear Skeleton from Square Cupboards,” in Machine Intelligence, B. Meltzer, D. Michie, Eds. (University Press, Edinburgh, 1969), Vol. 6, pp. 403–420.

Holje, O. M.

O. J. Løkberg, O. M. Holje, H. M. Pedersen, Opt. Laser Technol. 8, 17 (1976).
[CrossRef]

Honda, T.

S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).

Hurden, A. P. M.

A. P. M. Hurden, Opt. Laser Technol. 14, 21 (1982).
[CrossRef]

Idesawa, M.

T. Yatagai, M. Idesawa, Y. Yamaashi, M. Suzuki, in Moiré Fringe Topography and Spinal Deformity, M. S. Moreland, Ed. (Pergamon, New York, 1981), pp. 66–75.

Ineichen, B.

R. Dändliker, B. Ineichen, F. M. Mottier, Opt. Commun. 9, 412 (1973).
[CrossRef]

Kak, A. C.

A. Rosenfeld, A. C. Kak, Digital Picture Processing (Academic, New York, 1976).
[CrossRef]

Kaufmann, G. H.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Leendertz, J. A.

J. N. Butters, J. A. Leendertz, Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Løkberg, O. J.

O. J. Løkberg, O. M. Holje, H. M. Pedersen, Opt. Laser Technol. 8, 17 (1976).
[CrossRef]

Madsen, V. P.

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

Magome, N.

S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).

Mitchell, O. R.

O. R. Mitchell, E. J. Delp, T. P. Walle, W. K. Cadwallender, in Proceedings, Fifth International Conference on Pattern Recognition, Miami, Dec. 1980 (IEEE, New York, 1979), Vol. 1, pp. 361–363.

Mottier, F. M.

R. Dändliker, B. Ineichen, F. M. Mottier, Opt. Commun. 9, 412 (1973).
[CrossRef]

Nakadate, S.

S. Nakadate, T. Yatagai, H. Saito, Appl. Opt. 19, 1879 (1980).
[CrossRef] [PubMed]

S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).

Nowatzyk, A.

M. Schlüter, A. Nowatzyk, Opt. Acta 27, 799 (1980).
[CrossRef]

Orr, C. E.

A. T. Glassman, C. E. Orr, Proc. Soc. Photo-Opt. Instrum. Eng. 181, 64 (1979).

Pedersen, H. M.

O. J. Løkberg, O. M. Holje, H. M. Pedersen, Opt. Laser Technol. 8, 17 (1976).
[CrossRef]

Pugh, D. J.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Rosenfeld, A.

A. Rosenfeld, A. C. Kak, Digital Picture Processing (Academic, New York, 1976).
[CrossRef]

Rosenfeld, D. P.

Saito, H.

Schlüter, M.

M. Schlüter, A. Nowatzyk, Opt. Acta 27, 799 (1980).
[CrossRef]

Seguchi, Y.

Y. Seguchi, Y. Tomita, M. Watanabe, Exp. Mech. 19, 362 (1979).
[CrossRef]

Suzuki, M.

T. Yatagai, M. Idesawa, Y. Yamaashi, M. Suzuki, in Moiré Fringe Topography and Spinal Deformity, M. S. Moreland, Ed. (Pergamon, New York, 1981), pp. 66–75.

Tichenor, D. A.

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

Tomita, Y.

Y. Seguchi, Y. Tomita, M. Watanabe, Exp. Mech. 19, 362 (1979).
[CrossRef]

Tsujiuchi, J.

S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).

Underwood, K. L.

K. H. Womack, K. L. Underwood, D. Forbes, Proc. Soc. Photo-Opt. Instrum. Eng. 230, 168 (1980).

Walle, T. P.

O. R. Mitchell, E. J. Delp, T. P. Walle, W. K. Cadwallender, in Proceedings, Fifth International Conference on Pattern Recognition, Miami, Dec. 1980 (IEEE, New York, 1979), Vol. 1, pp. 361–363.

Watanabe, M.

Y. Seguchi, Y. Tomita, M. Watanabe, Exp. Mech. 19, 362 (1979).
[CrossRef]

White, A. D.

Womack, K. H.

K. H. Womack, K. L. Underwood, D. Forbes, Proc. Soc. Photo-Opt. Instrum. Eng. 230, 168 (1980).

Yamaashi, Y.

T. Yatagai, M. Idesawa, Y. Yamaashi, M. Suzuki, in Moiré Fringe Topography and Spinal Deformity, M. S. Moreland, Ed. (Pergamon, New York, 1981), pp. 66–75.

Yatagai, T.

S. Nakadate, T. Yatagai, H. Saito, Appl. Opt. 19, 1879 (1980).
[CrossRef] [PubMed]

T. Yatagai, M. Idesawa, Y. Yamaashi, M. Suzuki, in Moiré Fringe Topography and Spinal Deformity, M. S. Moreland, Ed. (Pergamon, New York, 1981), pp. 66–75.

Appl. Opt. (4)

Exp. Mech. (1)

Y. Seguchi, Y. Tomita, M. Watanabe, Exp. Mech. 19, 362 (1979).
[CrossRef]

J. Phys. E (1)

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Opt. Acta (1)

M. Schlüter, A. Nowatzyk, Opt. Acta 27, 799 (1980).
[CrossRef]

Opt. Commun. (1)

R. Dändliker, B. Ineichen, F. M. Mottier, Opt. Commun. 9, 412 (1973).
[CrossRef]

Opt. Eng. (2)

S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi, Opt. Eng. 20, 246 (1980).

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

Opt. Laser Technol. (3)

J. N. Butters, J. A. Leendertz, Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

O. J. Løkberg, O. M. Holje, H. M. Pedersen, Opt. Laser Technol. 8, 17 (1976).
[CrossRef]

A. P. M. Hurden, Opt. Laser Technol. 14, 21 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

A. T. Glassman, C. E. Orr, Proc. Soc. Photo-Opt. Instrum. Eng. 181, 64 (1979).

W. Augustyn, Proc. Soc. Photo-Opt. Instrum. Eng. 192, 128 (1979).

K. H. Womack, K. L. Underwood, D. Forbes, Proc. Soc. Photo-Opt. Instrum. Eng. 230, 168 (1980).

Other (7)

R. K. Erf, Ed., Holographic Nondestructive Testing (Academic, New York, 1974).

A. E. Ennos, “Speckle Interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975), Vol. 9, pp. 203–253.
[CrossRef]

T. Yatagai, M. Idesawa, Y. Yamaashi, M. Suzuki, in Moiré Fringe Topography and Spinal Deformity, M. S. Moreland, Ed. (Pergamon, New York, 1981), pp. 66–75.

O. R. Mitchell, E. J. Delp, T. P. Walle, W. K. Cadwallender, in Proceedings, Fifth International Conference on Pattern Recognition, Miami, Dec. 1980 (IEEE, New York, 1979), Vol. 1, pp. 361–363.

J. W. Goodman, “Statistical Properties of Laser Speckle Pattern,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, Berlin, 1975), Vol. 9, pp. 9–75.
[CrossRef]

A. Rosenfeld, A. C. Kak, Digital Picture Processing (Academic, New York, 1976).
[CrossRef]

C. J. Hilditch, “Linear Skeleton from Square Cupboards,” in Machine Intelligence, B. Meltzer, D. Michie, Eds. (University Press, Edinburgh, 1969), Vol. 6, pp. 403–420.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of computer-aided speckle pattern interferometry.

Fig. 2
Fig. 2

Properties of input speckle patterns. Normalized histograms for (a) input speckle pattern sampled for a period of one TV frame, and (b) averaged picture of (a) within a 2 × 2 sample area. Normalized power spectra for (c) input speckle pattern same as (a), and (d) averaged pattern same as (b).

Fig. 3
Fig. 3

Flow charts of fringe formations: (a) by taking absolute values of differences between gray level speckle patterns, and (b) by using exclusive or operation between binary speckle patterns.

Fig. 4
Fig. 4

Properties of a speckle interferogram generated by taking absolute values of differences between gray-level speckle patterns: (a) histogram, and (b) power spectrum. (c) Power spectrum for an averaged interferogram within a 15 × 15 sample area, see Fig. 5(b).

Fig. 5
Fig. 5

Fringe patterns generated by: (a) taking absolute values of differences between gray level speckle patterns, and (c) exclusive or operation between binary speckle patterns. Low-pass filtered fringes: (b) averaging of (a) within 15 × 15 neighbor sample points, and (d) pulse counting of (c) within an 11 × 11 sample area.

Fig. 6
Fig. 6

Flow chart for improvement of fringe quality, determination of fringe order numbers, and differentiation of interpolated fringe order numbers.

Fig. 7
Fig. 7

Interferograms obtained by improving the fringe quality of Fig. 5(b). (a) Result of 8-neighbor expansion and reshrinking after binarization of Fig. 5(b). (b) Result of expansion and reshrinking after man–machine interactive processing of (a) with rectangular area. (c) Result of skeletoning of (b) by Hilditch’s method.

Fig. 8
Fig. 8

Contour patterns obtained by differentiating the least-squares fit function to Fig. 7(c) with 2-D fourth-order polynomials. (a) First and (b) second derivatives in the horizontal direction, contouring slopes and bending moments of the displacement, respectively.

Fig. 9
Fig. 9

Flow chart of fully man–machine interactive processing.

Fig. 10
Fig. 10

Man–machine interactive processing using the center-oriented scanning. (a) Schematic representation for the center-oriented scanning mode; a1 and b1 are points indicated by the light pen; c is the origin point of the scanning, and a1a5, d, and b5b1 are end points of the scanning. The markers numbered from 1 to 4 are examples of order numbers of the detected minimum points. (b) Display of the detected and corrected minimum points using center-oriented scanning, superimposed on the original interferogram.

Metrics