Abstract

The refractive index and optical attenuation of sputtered SiO2–Ta2O5 waveguide film were measured in the 0.633–1.32-μm wavelength region. The waveguide film had a large refractive-index range of 1.46–2.08, which can be adjusted by suitable selection of the composition ratio of the SiO2–Ta2O5 target. Substrate heating, up to 270°C, during the sputtering process was effective for obtaining low attenuation. The waveguide films showed low attenuations, <0.41 dB/cm for the TE0 mode. The best fits of the form λγ to the measured attenuation have γ between 0 and −1, where λ is the wavelength. This wavelength dependence of the attenuation can be interpreted based on mode conversions due to the film surface roughness.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Rand, R. D. Standley, Appl. Opt. 11, 2482 (1972).
    [CrossRef] [PubMed]
  2. S. J. Ingrey, W. D. Westwood, Y. C. Cheng, J. Wei, Appl. Opt. 14, 2194 (1975).
    [CrossRef] [PubMed]
  3. J. E. Goell, Appl. Opt. 12, 737 (1973).
    [CrossRef] [PubMed]
  4. H. Terui, M. Kobayashi, Appl. Phys. Lett. 32, 666 (1978).
    [CrossRef]
  5. H. Terui, M. Kobayashi, J. Appl. Phys. 52, 5442 (1981).
    [CrossRef]
  6. H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19, 451 (1980).
  7. H. Terui, M. Kobayashi, J. Noda, Appl. Opt. 21, 1979 (1982).
    [CrossRef] [PubMed]
  8. R. Ulrich, R. Torge, Appl. Opt. 12, 2901 (1973).
    [CrossRef] [PubMed]
  9. K. Kubodera, K. Otsuka, S. Miyazawa, Appl. Opt. 18, 884 (1979).
    [CrossRef] [PubMed]
  10. L. K. H. Van Beek, Prog. Dielectr. 7, 69 (1967).
  11. R. Jacobsson, Phys. Thin Films 8, 51 (1975).
  12. H. P. Weber, F. A. Dunn, W. N. Leibolt, Appl. Opt. 12, 755 (1973).
    [CrossRef] [PubMed]
  13. Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).
  14. Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Trans. IECE Jpn. 56-C, 377 (1973).
  15. S. Miyanaga, M. Imai, T. Asakura, IEEE J. Quantum Electron. QE-14, 30 (1978).
    [CrossRef]
  16. C. K. Carniglia, Opt. Eng. 18, 104 (1979).
    [CrossRef]
  17. D. Marcuse, Theory of Dielectric Optical Waveguide (Academic, New York, 1974).
  18. M. Imai, S. Miyanaga, T. Asakura, IEEE J. Quantum Electron. QE-13, 255 (1977).
    [CrossRef]

1982 (1)

1981 (1)

H. Terui, M. Kobayashi, J. Appl. Phys. 52, 5442 (1981).
[CrossRef]

1980 (1)

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19, 451 (1980).

1979 (2)

1978 (2)

S. Miyanaga, M. Imai, T. Asakura, IEEE J. Quantum Electron. QE-14, 30 (1978).
[CrossRef]

H. Terui, M. Kobayashi, Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

1977 (1)

M. Imai, S. Miyanaga, T. Asakura, IEEE J. Quantum Electron. QE-13, 255 (1977).
[CrossRef]

1975 (2)

1973 (4)

1972 (2)

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).

M. J. Rand, R. D. Standley, Appl. Opt. 11, 2482 (1972).
[CrossRef] [PubMed]

1967 (1)

L. K. H. Van Beek, Prog. Dielectr. 7, 69 (1967).

Asakura, T.

S. Miyanaga, M. Imai, T. Asakura, IEEE J. Quantum Electron. QE-14, 30 (1978).
[CrossRef]

M. Imai, S. Miyanaga, T. Asakura, IEEE J. Quantum Electron. QE-13, 255 (1977).
[CrossRef]

Carniglia, C. K.

C. K. Carniglia, Opt. Eng. 18, 104 (1979).
[CrossRef]

Cheng, Y. C.

Chiba, K.

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Trans. IECE Jpn. 56-C, 377 (1973).

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).

Dunn, F. A.

Furuya, K.

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Trans. IECE Jpn. 56-C, 377 (1973).

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).

Goell, J. E.

Hakuta, M.

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Trans. IECE Jpn. 56-C, 377 (1973).

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).

Imai, M.

S. Miyanaga, M. Imai, T. Asakura, IEEE J. Quantum Electron. QE-14, 30 (1978).
[CrossRef]

M. Imai, S. Miyanaga, T. Asakura, IEEE J. Quantum Electron. QE-13, 255 (1977).
[CrossRef]

Ingrey, S. J.

Jacobsson, R.

R. Jacobsson, Phys. Thin Films 8, 51 (1975).

Kobayashi, M.

H. Terui, M. Kobayashi, J. Noda, Appl. Opt. 21, 1979 (1982).
[CrossRef] [PubMed]

H. Terui, M. Kobayashi, J. Appl. Phys. 52, 5442 (1981).
[CrossRef]

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19, 451 (1980).

H. Terui, M. Kobayashi, Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

Kubodera, K.

Leibolt, W. N.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguide (Academic, New York, 1974).

Miyanaga, S.

S. Miyanaga, M. Imai, T. Asakura, IEEE J. Quantum Electron. QE-14, 30 (1978).
[CrossRef]

M. Imai, S. Miyanaga, T. Asakura, IEEE J. Quantum Electron. QE-13, 255 (1977).
[CrossRef]

Miyazawa, S.

Noda, J.

Otsuka, K.

Rand, M. J.

Standley, R. D.

Suematsu, Y.

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Trans. IECE Jpn. 56-C, 377 (1973).

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).

Terui, H.

H. Terui, M. Kobayashi, J. Noda, Appl. Opt. 21, 1979 (1982).
[CrossRef] [PubMed]

H. Terui, M. Kobayashi, J. Appl. Phys. 52, 5442 (1981).
[CrossRef]

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19, 451 (1980).

H. Terui, M. Kobayashi, Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

Torge, R.

Ulrich, R.

Van Beek, L. K. H.

L. K. H. Van Beek, Prog. Dielectr. 7, 69 (1967).

Weber, H. P.

Wei, J.

Westwood, W. D.

Appl. Opt. (7)

Appl. Phys. Lett. (1)

H. Terui, M. Kobayashi, Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Miyanaga, M. Imai, T. Asakura, IEEE J. Quantum Electron. QE-14, 30 (1978).
[CrossRef]

M. Imai, S. Miyanaga, T. Asakura, IEEE J. Quantum Electron. QE-13, 255 (1977).
[CrossRef]

J. Appl. Phys. (1)

H. Terui, M. Kobayashi, J. Appl. Phys. 52, 5442 (1981).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (1)

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19, 451 (1980).

Opt. Eng. (1)

C. K. Carniglia, Opt. Eng. 18, 104 (1979).
[CrossRef]

Phys. Thin Films (1)

R. Jacobsson, Phys. Thin Films 8, 51 (1975).

Proc. IEEE (1)

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Proc. IEEE 61, 1744 (1972).

Prog. Dielectr. (1)

L. K. H. Van Beek, Prog. Dielectr. 7, 69 (1967).

Trans. IECE Jpn. (1)

Y. Suematsu, K. Furuya, M. Hakuta, K. Chiba, Trans. IECE Jpn. 56-C, 377 (1973).

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguide (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Refractive index of SiO2–Ta2O5 film vs target composition at 0.633-μm wavelength.

Fig. 2
Fig. 2

SiO2–Ta2O5 film composition vs target composition.

Fig. 3
Fig. 3

Refractive index of SiO2–Ta2O5 film vs film composition at 0.633-μm wavelength: dashed line, experiment; solid line, Fricke formula.

Fig. 4
Fig. 4

Refractive-index dispersion of SiO2–Ta2O5 film as a function of Ta2O5 fraction (mol %) contained in the film. Solid lines are obtained using the Cauchy formula and parameters listed in Table I.

Fig. 5
Fig. 5

Attenuation of SiO2 (100-mol %) film vs substrate temperature during sputtering. Attenuation measurement was made for the TE0 mode at 0.633-μm wavelength.

Fig. 6
Fig. 6

Attenuation reduction produced by substrate heating during sputtering. Attenuation measurement was made for the TE0 mode at 0.633-μm wavelength. Water-cooled temperature is ∼40°C.

Fig. 7
Fig. 7

Angular distribution of scattered light. The parameter is Ta2O5 fraction (mol %) contained in waveguide film. The excited TE0 mode propagates in the z direction. The x direction is normal to the film surface in the air region.

Fig. 8
Fig. 8

Surface roughness observed by an electron microscope: (a) substrate surface, (b) film surface.

Fig. 9
Fig. 9

Measured wavelength dependence of attenuation for the TE0 mode. The parameter is Ta2O5 fraction (mol %) contained in the film.

Fig. 10
Fig. 10

Calculated wavelength dependence of attenuation as a function of correlation length B of film surface roughness. The attenuation, shown as TOTAL, is normalized by the value at 0.6-μm wavelength. The attenuation is resolved into guided–guided and guided–radiation mode conversions.

Fig. 11
Fig. 11

Calculated parameter γ for the wavelength dependence of attenuation (λ γ ) and normalized attenuation coefficient 2α/a2 vs correlation length of film surface roughness: λ, wavelength; a, rms deviation of film surface roughness.

Tables (1)

Tables Icon

Table I n0 and A Values in the Cauchy Formula

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + A / λ 2 ,
a 2 exp ( | x 1 x 2 | B x | z 1 z 2 | B z ) ,
n 2 n 1 2 n 2 = C 2 C 1 + C 2 · n 2 2 n 1 2 Ln 2 2 + ( 1 L ) n 2 ,
L c = L 0 ( n f 2 n c 2 n f 2 n a 2 ) 2 · F c F 0 ,
F = i { ( E gn · E g 0 ) 2 / [ ( β 0 β n ) 2 + 1 / B 2 ] + ( E ρ · E g 0 ) 2 / [ ( β 0 β ρ ) 2 + 1 / B 2 ] d ρ } ,

Metrics