Abstract

Two methods for color coding of phase variations of an object in coded correlation filtering quasi-interferometry are introduced. One is based on dispersive filtering, the other on color correlation filtering with colored masks. Performances are analyzed in terms of geometrical optics. Various possible configurations are studied. Experiments have proved its usefulness in practice. The phase variation can be measured to a high degree of precision if a spectroscopic measurement is made.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Liu, Appl. Opt. 21, 2817 (1982).
    [CrossRef] [PubMed]
  2. L. Liu, Appl. Opt. 21, 3839 (1982).
    [CrossRef] [PubMed]
  3. H.-K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
    [CrossRef]
  4. G. Indebetouw, Appl. Opt. 16, 1951 (1977).
    [CrossRef] [PubMed]
  5. A. M. Tai, F. T. S. Yu, H. Chen, Opt. Lett. 3, 190 (1978).
    [CrossRef] [PubMed]
  6. J. Bescos, T. C. Strand, Appl. Opt. 17, 2524 (1978).
    [PubMed]
  7. G. Indebetouw, Appl. Opt. 18, 4206 (1979).
    [CrossRef] [PubMed]
  8. J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).
  9. G. J. North, R. F. Cash, Nat. Phys. Lab. V.K. Aero Note 383 (Teddington, 1959).
  10. G. J. North, Natl. Phys. Lab. U.K. Aero Note 397 (Teddington, 1959).
  11. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).
  12. L. Liu, Opt. Commun. 44, 301 (1983).
    [CrossRef]

1983

L. Liu, Opt. Commun. 44, 301 (1983).
[CrossRef]

1982

1979

1978

1977

1976

H.-K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

1896

J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).

Bescos, J.

Cash, R. F.

G. J. North, R. F. Cash, Nat. Phys. Lab. V.K. Aero Note 383 (Teddington, 1959).

Chen, H.

Goodman, J. W.

H.-K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

Indebetouw, G.

Liu, H.-K.

H.-K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

Liu, L.

North, G. J.

G. J. North, R. F. Cash, Nat. Phys. Lab. V.K. Aero Note 383 (Teddington, 1959).

G. J. North, Natl. Phys. Lab. U.K. Aero Note 397 (Teddington, 1959).

Rheinberg, J.

J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).

Strand, T. C.

Tai, A. M.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).

Yu, F. T. S.

Appl. Opt.

J. R. Microsc. Soc.

J. Rheinberg, J. R. Microsc. Soc. 373 (Aug.1896).

Nouv. Rev. Opt.

H.-K. Liu, J. W. Goodman, Nouv. Rev. Opt. 7, 285 (1976).
[CrossRef]

Opt. Commun.

L. Liu, Opt. Commun. 44, 301 (1983).
[CrossRef]

Opt. Lett.

Other

G. J. North, R. F. Cash, Nat. Phys. Lab. V.K. Aero Note 383 (Teddington, 1959).

G. J. North, Natl. Phys. Lab. U.K. Aero Note 397 (Teddington, 1959).

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

One-dimensional color coding with a dispersion prism.

Fig. 2
Fig. 2

Only two slits within the visible bandwidth of illumination.

Fig. 3
Fig. 3

Relation between the angle of refraction and the corresponding color for coding.

Fig. 4
Fig. 4

Two-dimensional color filtering with a cone prism.

Fig. 5
Fig. 5

Configurations of two masks for Example 1.

Fig. 6
Fig. 6

Correlation functions of three colors with a ring mask.

Fig. 7
Fig. 7

Color coding process of Example 1 in the CIE chromaticity diagram.

Fig. 8
Fig. 8

Color coding process for Example 2.

Fig. 9
Fig. 9

Optimum colored mask.

Fig. 10
Fig. 10

Color coding process for Example 3.

Fig. 11
Fig. 11

Tricolor mask.

Fig. 12
Fig. 12

Color quasi-interferogram of a glass bottle in 2-D filtering (black and white).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I f ( u 2 , υ 2 ) = | FO ( u 2 , υ 2 ) | 2 S ( u 2 , υ 2 ) ,
S ( u 2 , υ 2 ) = S 1 ( f 1 f 2 u 2 , f 1 f 2 υ 2 ) * * S 2 ( u 2 , υ 2 ) ,
I f ( u 2 , υ 2 ) = k | FO ( u 2 , υ 2 ) | 2 δ ( u 2 + f 2 f 1 u 10 u 20 kD ) ,
FO λ i ( u 2 f 2 A Δ λ i cos α , υ 2 ) ,
I f ( u 2 , υ 2 ) = i k | FO λ i ( u 2 f 2 A Δ λ i cos α , υ 2 ) | 2 × δ ( u 2 + f 2 f 1 u 10 u 20 kD ) .
I f ( u 2 , υ 2 ) = i k | FO ( u 2 , υ 2 ) | 2 × δ ( u 2 + f 2 A Δ λ i cos α + f 2 f 1 u 10 u 20 kD ) .
grad ϕ ( x , y ) = 2 π λ sin β ( x , y ) .
u 2 = f 2 sin β ,
sin β = kD f 2 A Δ λ i cos α u 10 f 1 + u 20 f 2 .
D c = f 2 A ( λ max λ min ) cos α .
Δ λ 0 = ( u 20 f 2 u 10 f 1 ) ( A cos α ) 1 .
I f ( u 2 , υ 2 ) = | FO ( u 2 , υ 2 ) | 2 i k K [ δ ( u 2 + f 2 f 1 u 10 u 20 kD ) + δ ( u 2 + K f 2 B Δ λ i cos α + K f 2 β λ 0 cos α + f 2 f 1 u 10 u 20 kD ) + δ ( u 2 + K f 2 B Δ λ i cos α K f 2 B λ 0 cos α + f 2 f 1 u 10 u 20 kD ) ] ,
I f ( u 2 , υ 2 ) = | FO ( u 2 , υ 2 ) | 2 i δ [ r 2 | f 2 A ( λ 0 + Δ λ i ) | ] ,
I f ( u 2 , υ 2 ) = | FO ( u 2 , υ 2 ) | 2 i K [ δ ( r 2 ) + δ ( r 2 | K f 2 B Δ λ i + K f 2 B λ 0 | ) ] ,
X ( r / R ) = I 1 ( r / R ) X 1 + I 2 ( r / R ) X 2 + I 3 ( r / R ) X 3 , Y ( r / R ) = I 1 ( r / R ) Y 1 + I 2 ( r / R ) Y 2 + I 3 ( r / R ) Y 3 , Z ( r / R ) = I 1 ( r / R ) Z 1 + I 2 ( r / R ) Z 2 + I 3 ( r / R ) Z 3 ,
x ( r / R ) = I 1 ( r / R ) x 1 + I 2 ( r / R ) x 2 + I 3 ( r / R ) x 3 ,
y ( r / R ) = I 1 ( r / R ) y 1 + I 2 ( r / R ) y 2 + I 3 ( r / R ) y 3 .

Metrics