Abstract

A Raman lidar technique for measuring atmospheric temperature using pure rotational Raman spectra of N2 and O2 is discussed in detail. The use of a double-grating monochromator in the lidar for isolating two portions of the pure rotational Raman spectrum (PRRS) of N2 and O2 and suppressing the line of aerosol light scattering is experimentally shown to be very efficient. The feasibility of the method is convincingly illustrated by the results of laboratory experiments, as well as with measurements of air temperature carried out in the atmosphere. The accuracy of temperature measurements using the ratio of intensities of two portions of PRRS of N2 and O2 was ∼±0.74 K in laboratory experiments. The accuracy of the atmospheric temperature profile measurements using the lidar varied from 0.8 K at altitudes up to 300–400 mto, and slightly exceeded, ±1.5 K at 1-km height. Lidar temperature data are in good agreement with radiosonde data.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Cooney, J. Appl. Meteorol. 11, 108 (1972).
    [CrossRef]
  2. J. A. Salzman, T. Coney, “Measurements of Atmospheric Temperature by Raman Lidar,” Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973, Conference Abstracts, pp. 71 and 72.
  3. T. Kobayasi, H. Shimizu, H. Inaba, “Laser Radar Technique for Remote Measurement of Atmospheric Temperature,” Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 Sept. 1974, Conference Abstracts, pp. 49 and 50.
  4. Yu. F. Arshinov, S. A. Danichkin, “Rotational Raman Spectra of Nitrogen and Oxygen and Use of Them for Measuring Air Temperature,” in Optical Waves Propagation Through the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1975), pp. 169–173.
  5. A. Cohen, J. A. Cooney, K. N. Geller, Appl. Opt. 15, 2896 (1976).
    [CrossRef] [PubMed]
  6. R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
    [CrossRef]
  7. Yu. F. Arshinov, S. M. Bobrovnikov, “Lidar Measurements of Temperature Dependence of the Intensity Ratio for Two Portions of N2 and O2 PRRS,” Sixth All-Union Symposium on Lidar and Acoustic Sensing of the Atmosphere, Tomsk (1980), Abstracts, pp. 242–245.
  8. Yu. F. Arshinov, S. M. Bobrovnikov, Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 19, 431 (1983).
  9. G. Placzek, in Handbuch der Radiologic Vol. 6, Part 2, E. Markx, Ed. (Akademischer Verlag, Leipzig, 1934).
  10. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, I. V. Samokhvalov, “Atmospheric Temperature Measurements Using Pure Rotational Raman Spectrum and Lidar Calibration,” Ninth International Conference on Laser Radar Studies of the Atmosphere, Munich, 3–5 July 1979, Conference Abstracts, pp. 21–25.
  11. Yu. F. Arshinov, S. M. Bobrovnikov, S. V. Sapozhnikov, Sov. J. Appl. Spectrosc. 32, 725 (1980).
  12. Yu. F. Arshinov, S. M. Bobrovnikov, “Spectroscopic Separation of the Pure Rotational Raman Spectra and Background Radiation due to Rayleigh and Mie Scattering,” in Lidar Facilities and Techniques for Remote Sensing of the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1980), pp. 47–53.
  13. A. N. Zaidel, G. V. Ostrovskaya, Ya. N. Ostrovskii, Spectroscopic Devices and Their Use in Practice (Nauka, Moscow, 1972), p. 375.
  14. V. M. Mitev, V. B. Simeonov, T. V. Grigorov, Sov. J. Appl. Spectrosc. 38, 338 (1983).

1983

Yu. F. Arshinov, S. M. Bobrovnikov, Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 19, 431 (1983).

V. M. Mitev, V. B. Simeonov, T. V. Grigorov, Sov. J. Appl. Spectrosc. 38, 338 (1983).

1980

Yu. F. Arshinov, S. M. Bobrovnikov, S. V. Sapozhnikov, Sov. J. Appl. Spectrosc. 32, 725 (1980).

1979

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

1976

1972

J. A. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

Arshinov, Yu. F.

Yu. F. Arshinov, S. M. Bobrovnikov, Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 19, 431 (1983).

Yu. F. Arshinov, S. M. Bobrovnikov, S. V. Sapozhnikov, Sov. J. Appl. Spectrosc. 32, 725 (1980).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, I. V. Samokhvalov, “Atmospheric Temperature Measurements Using Pure Rotational Raman Spectrum and Lidar Calibration,” Ninth International Conference on Laser Radar Studies of the Atmosphere, Munich, 3–5 July 1979, Conference Abstracts, pp. 21–25.

Yu. F. Arshinov, S. M. Bobrovnikov, “Spectroscopic Separation of the Pure Rotational Raman Spectra and Background Radiation due to Rayleigh and Mie Scattering,” in Lidar Facilities and Techniques for Remote Sensing of the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1980), pp. 47–53.

Yu. F. Arshinov, S. A. Danichkin, “Rotational Raman Spectra of Nitrogen and Oxygen and Use of Them for Measuring Air Temperature,” in Optical Waves Propagation Through the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1975), pp. 169–173.

Yu. F. Arshinov, S. M. Bobrovnikov, “Lidar Measurements of Temperature Dependence of the Intensity Ratio for Two Portions of N2 and O2 PRRS,” Sixth All-Union Symposium on Lidar and Acoustic Sensing of the Atmosphere, Tomsk (1980), Abstracts, pp. 242–245.

Bobrovnikov, S. M.

Yu. F. Arshinov, S. M. Bobrovnikov, Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 19, 431 (1983).

Yu. F. Arshinov, S. M. Bobrovnikov, S. V. Sapozhnikov, Sov. J. Appl. Spectrosc. 32, 725 (1980).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, I. V. Samokhvalov, “Atmospheric Temperature Measurements Using Pure Rotational Raman Spectrum and Lidar Calibration,” Ninth International Conference on Laser Radar Studies of the Atmosphere, Munich, 3–5 July 1979, Conference Abstracts, pp. 21–25.

Yu. F. Arshinov, S. M. Bobrovnikov, “Spectroscopic Separation of the Pure Rotational Raman Spectra and Background Radiation due to Rayleigh and Mie Scattering,” in Lidar Facilities and Techniques for Remote Sensing of the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1980), pp. 47–53.

Yu. F. Arshinov, S. M. Bobrovnikov, “Lidar Measurements of Temperature Dependence of the Intensity Ratio for Two Portions of N2 and O2 PRRS,” Sixth All-Union Symposium on Lidar and Acoustic Sensing of the Atmosphere, Tomsk (1980), Abstracts, pp. 242–245.

Cohen, A.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

A. Cohen, J. A. Cooney, K. N. Geller, Appl. Opt. 15, 2896 (1976).
[CrossRef] [PubMed]

Coney, T.

J. A. Salzman, T. Coney, “Measurements of Atmospheric Temperature by Raman Lidar,” Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973, Conference Abstracts, pp. 71 and 72.

Cooney, J.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

Cooney, J. A.

Danichkin, S. A.

Yu. F. Arshinov, S. A. Danichkin, “Rotational Raman Spectra of Nitrogen and Oxygen and Use of Them for Measuring Air Temperature,” in Optical Waves Propagation Through the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1975), pp. 169–173.

Farina, J.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

Geller, K.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

Geller, K. N.

Gill, R.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

Grigorov, T. V.

V. M. Mitev, V. B. Simeonov, T. V. Grigorov, Sov. J. Appl. Spectrosc. 38, 338 (1983).

Inaba, H.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser Radar Technique for Remote Measurement of Atmospheric Temperature,” Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 Sept. 1974, Conference Abstracts, pp. 49 and 50.

Kobayasi, T.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser Radar Technique for Remote Measurement of Atmospheric Temperature,” Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 Sept. 1974, Conference Abstracts, pp. 49 and 50.

Mitev, V. M.

V. M. Mitev, V. B. Simeonov, T. V. Grigorov, Sov. J. Appl. Spectrosc. 38, 338 (1983).

Ostrovskaya, G. V.

A. N. Zaidel, G. V. Ostrovskaya, Ya. N. Ostrovskii, Spectroscopic Devices and Their Use in Practice (Nauka, Moscow, 1972), p. 375.

Ostrovskii, Ya. N.

A. N. Zaidel, G. V. Ostrovskaya, Ya. N. Ostrovskii, Spectroscopic Devices and Their Use in Practice (Nauka, Moscow, 1972), p. 375.

Placzek, G.

G. Placzek, in Handbuch der Radiologic Vol. 6, Part 2, E. Markx, Ed. (Akademischer Verlag, Leipzig, 1934).

Salzman, J. A.

J. A. Salzman, T. Coney, “Measurements of Atmospheric Temperature by Raman Lidar,” Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973, Conference Abstracts, pp. 71 and 72.

Samokhvalov, I. V.

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, I. V. Samokhvalov, “Atmospheric Temperature Measurements Using Pure Rotational Raman Spectrum and Lidar Calibration,” Ninth International Conference on Laser Radar Studies of the Atmosphere, Munich, 3–5 July 1979, Conference Abstracts, pp. 21–25.

Sapozhnikov, S. V.

Yu. F. Arshinov, S. M. Bobrovnikov, S. V. Sapozhnikov, Sov. J. Appl. Spectrosc. 32, 725 (1980).

Shimizu, H.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser Radar Technique for Remote Measurement of Atmospheric Temperature,” Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 Sept. 1974, Conference Abstracts, pp. 49 and 50.

Simeonov, V. B.

V. M. Mitev, V. B. Simeonov, T. V. Grigorov, Sov. J. Appl. Spectrosc. 38, 338 (1983).

Zaidel, A. N.

A. N. Zaidel, G. V. Ostrovskaya, Ya. N. Ostrovskii, Spectroscopic Devices and Their Use in Practice (Nauka, Moscow, 1972), p. 375.

Zuev, V. E.

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, I. V. Samokhvalov, “Atmospheric Temperature Measurements Using Pure Rotational Raman Spectrum and Lidar Calibration,” Ninth International Conference on Laser Radar Studies of the Atmosphere, Munich, 3–5 July 1979, Conference Abstracts, pp. 21–25.

Appl. Opt.

Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana

Yu. F. Arshinov, S. M. Bobrovnikov, Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 19, 431 (1983).

J. Appl. Meteorol.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, J. Appl. Meteorol. 8, 225 (1979).
[CrossRef]

J. A. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

Sov. J. Appl. Spectrosc.

Yu. F. Arshinov, S. M. Bobrovnikov, S. V. Sapozhnikov, Sov. J. Appl. Spectrosc. 32, 725 (1980).

V. M. Mitev, V. B. Simeonov, T. V. Grigorov, Sov. J. Appl. Spectrosc. 38, 338 (1983).

Other

Yu. F. Arshinov, S. M. Bobrovnikov, “Spectroscopic Separation of the Pure Rotational Raman Spectra and Background Radiation due to Rayleigh and Mie Scattering,” in Lidar Facilities and Techniques for Remote Sensing of the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1980), pp. 47–53.

A. N. Zaidel, G. V. Ostrovskaya, Ya. N. Ostrovskii, Spectroscopic Devices and Their Use in Practice (Nauka, Moscow, 1972), p. 375.

J. A. Salzman, T. Coney, “Measurements of Atmospheric Temperature by Raman Lidar,” Fifth Conference on Laser Radar Studies of the Atmosphere, Williamsburg, Va., 4–6 June 1973, Conference Abstracts, pp. 71 and 72.

T. Kobayasi, H. Shimizu, H. Inaba, “Laser Radar Technique for Remote Measurement of Atmospheric Temperature,” Sixth Conference on Laser Atmospheric Studies, Sendai, Japan, 3–6 Sept. 1974, Conference Abstracts, pp. 49 and 50.

Yu. F. Arshinov, S. A. Danichkin, “Rotational Raman Spectra of Nitrogen and Oxygen and Use of Them for Measuring Air Temperature,” in Optical Waves Propagation Through the Atmosphere, V. E. Zuev, Ed. (Nauka, Novosibirsk, 1975), pp. 169–173.

Yu. F. Arshinov, S. M. Bobrovnikov, “Lidar Measurements of Temperature Dependence of the Intensity Ratio for Two Portions of N2 and O2 PRRS,” Sixth All-Union Symposium on Lidar and Acoustic Sensing of the Atmosphere, Tomsk (1980), Abstracts, pp. 242–245.

G. Placzek, in Handbuch der Radiologic Vol. 6, Part 2, E. Markx, Ed. (Akademischer Verlag, Leipzig, 1934).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, I. V. Samokhvalov, “Atmospheric Temperature Measurements Using Pure Rotational Raman Spectrum and Lidar Calibration,” Ninth International Conference on Laser Radar Studies of the Atmosphere, Munich, 3–5 July 1979, Conference Abstracts, pp. 21–25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Envelopes of N2 pure rotational Raman spectrum at three temperatures.

Fig. 2
Fig. 2

(a) Schematic presentation of spectrum of backscattered radiation in the vicinity of aerosol scattering line after one monochromatization. (b) Position of intermediate slits. (c) Positions of images of the intermediate slits at the exit of a double monochromator.

Fig. 3
Fig. 3

Spectral behavior of the stray-light intensity at the exit of the double-grating monochromator. Light source is the argon-ion laser (λ = 514.5 nm).

Fig. 4
Fig. 4

Block diagram of the laboratory experiments.

Fig. 5
Fig. 5

View of continuous spectrum mixed with the 514.5-nm monochromatic line at the exit plane of the double monochromator having two intermediate slits.

Fig. 6
Fig. 6

Temperature behavior of the R(T) function measured in pure N2, O2, and air.

Fig. 7
Fig. 7

Arrangement of the atmospheric experiment on measuring the temporal behavior of temperature of a fixed atmospheric volume.

Fig. 8
Fig. 8

Experimental results illustrating the stability of the lidar recording system: (a) temporal behavior of the atmospheric temperature; (b) values of the PRRS intensity ratio measured with the lidar.

Fig. 9
Fig. 9

(a) Comparison between lidar temperature data (dots) and a contact thermometer (solid line). (b) The same as in (a).

Fig. 10
Fig. 10

Profiles of the atmospheric temperature obtained with the lidar (- · -) and radiosonde (solid lines). The lengths of bars in the lidar profiles denote the value of standard deviations calculated assuming the Poisson statistics to be the only source of errors in measurements of lidar returns.

Tables (2)

Tables Icon

Table I Parameters of the Approximating Formula Calculated from Experimental Data Presented in Fig. 6

Tables Icon

Table II Basic Parameters of the Pure Rotational Raman Lidar

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ( J , T ) = I 0 ν J 4 g I B N 0 kT ( 2 J + 1 ) S ( J ) exp [ B kT J ( J + 1 ) ] ,
( 2 J + 1 ) S ( J ) = ( J + 1 ) ( J + 2 ) ( 2 J + 3 )
( 2 J + 1 ) S ( J ) = J ( J 1 ) ( 2 J 1 )
R ( T ) = I ( J 1 ) I ( J 2 ) = exp ( α T + β ) ,
R ( T ) = { J N 2 , J O 2 [ I N 2 ( J N 2 , T ) + I O 2 ( J O 2 , T ) ] } 1 { I N 2 , J O 2 [ I N 2 ( J N 2 , T ) + I O 2 ( J O 2 , T ) ] } 2 ,
R ( T ) exp ( α T + β ) .
R ( T ) exp ( α T + β )
n ( r ) = η τ W 0 h ν Ram S r γ ( r ) β π Ram ( r ) Δ r r 2 T 2 ( r ) ,
R [ T ( r ) ] = N 1 ( r ) N 2 ( r ) = n ̅ 1 ( r ) Δ t m n ̅ 2 ( r ) Δ t m ,
δ R st = σ R R ̅ 1 + R ̅ ( r ) N 1 ,
R [ T ( t ) ] R [ T ( t 0 ) ] [ 1 + dR dT Δ T ( t ) ] .
T ( t ) = T cont ( t 0 ) + Δ T lid ( t ) .
T ( h i ) = T cont ( h 0 ) + Δ T lid ( h i ) ,

Metrics