Abstract

Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Synchrotron Radiation Source (SRS), Science and Engineering Research Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire, U.K. National Synchrotron Light Source (NSLS) VUV Ring, Brookhaven National Laboratory, Upton, New York 11973. Berliner Elektronenspeicherring-Gesellschaft f. Synchrotronstrahlung MbH BESSY, D-1000 Berlin, 33, Federal Republic of Germany.
  2. J. R. Stevenson, H. Ellis, R. Bartlett, Appl. Opt. 12, 2884 (1973).
    [CrossRef] [PubMed]
  3. J. R. Stevenson, J. M. Cathcart, Nucl. Instrum. Methods 172, 367 (1980).
    [CrossRef]
  4. P. Lagarde, Infrared Phys. 18, 395 (1978).
    [CrossRef]
  5. P. Meyer, P. Lagarde, J. Phys. 37, 1387 (1976).
    [CrossRef]
  6. G. P. Williams, Nucl. Instrum. Methods 195, 383 (1982).
    [CrossRef]
  7. J. Schwinger, Phys. Rev. 75, 1912 (1949).
    [CrossRef]
  8. A. A. Sokolov, I. M. Ternov, Synchrotron Radiation (Pergamon, Oxford, 1968).
  9. I. H. Munro, “Synchrotron Radiation as a Source to Study Time Dependent Phenomena,” Preprint DL/SCI/P 298E (Daresbury Laboratory, 1981).
  10. R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
    [CrossRef]
  11. M. Abramowitz, I. A. Stegun, Eds, Handbook of Mathematical Functions (Dover, New York, 1965).
  12. K. C. Westfold, Astrophys J. 130, 241 (1959).
    [CrossRef]
  13. G. K. Green, “Spectra and Optics of Synchrotron Radiation,” Sec. 1, Proposal for a National Synchrotron Light Source, Vol. 2, J. P. Blewett, Ed., BNL-50595 (Brookhaven National Laboratory, 1977).
  14. R. G. Greenler, J. Vac. Sci. Technol. 12, 1410 (1975).
    [CrossRef]
  15. A. M. Bradshaw, F. M. Hoffmann, Surf. Sci. 72, 513 (1978).
    [CrossRef]
  16. V. O. Kostroun, Nucl. Instrum. Methods 172, 341 (1980).
  17. W. D. Duncan, J. Yarwood, “First Detection of Far-Infrared Photons from a Synchrotron Radiation Source,” DL/SCI/TM 32E (Daresbury Laboratory, 1982).
  18. Y. J. Chabal, A. J. Sievers, Phys. Rev. Lett. 44, 944 (1980).
    [CrossRef]
  19. R. G. Greenler, J. Chem. Phys. 44, 310 (1966).
    [CrossRef]
  20. C. Peuker, D. Kunath, J. Chem. Soc. Faraday Trans. 177, 2079 (1981).
  21. A. T. Bell, M. L. Mair, Vibrational Spectroscopy of Adsorbed Species (American Chemical Society, Washington, D.C., 1980).
    [CrossRef]
  22. M. W. Evans, C. J. Reid, Mol. Phys. 40, 1523 (1960).
  23. G. J. Evans, M. W. Evans, J. Chem. Soc. Chem. Commun. 267 (1978).
  24. A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).
  25. F. Kremer, J. R. Izatt, in Infrared and Millimeter Waves, Vol. 2, K. J. Button, Ed. (Plenum, New York, 1981), p. 675.
    [CrossRef]
  26. A. F. Gibson, M. F. Kimmitt, “Photon Drag Detection,” Infrared and Millimeter Waves, Vol. 3, K. J. Button, Ed. (Academic, New York1980), Chap. 5.
  27. J. L. Wood, in Spectroscopy and Structure of Molecular Complexes, J. Yarwood, Ed. (Plenum, New York, 1973), Chap. 4, p. 303.
  28. R. Lopez-Delgado, H. Szwarc, Opt. Commun. 19, 286 (1976).
    [CrossRef]
  29. J. Chamberlain, Principles of Interferometric Spectroscopy (Wiley, New York, 1979), p. 217.
  30. F. C. Michel, Phys. Rev. Lett. 48, 580 (1982).
    [CrossRef]
  31. R. Coïsson, Institute di Sisica, Univ. di Parma, private communication.
  32. H. Winick, T. Knight, Eds. “Wiggler Magnets,” Stanford University Report SSRP 77/05 (May1977).
  33. A. Hofmann, Nucl. Instrum. Methods 152, 17 (1978).
    [CrossRef]
  34. S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).
  35. G. V. Marr, D. J. Thompson, Eds. An Optimized Vacuum Ultraviolet Storage Ring (North-Holland, Amsterdam, 1981).

1982 (3)

G. P. Williams, Nucl. Instrum. Methods 195, 383 (1982).
[CrossRef]

R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
[CrossRef]

F. C. Michel, Phys. Rev. Lett. 48, 580 (1982).
[CrossRef]

1981 (1)

C. Peuker, D. Kunath, J. Chem. Soc. Faraday Trans. 177, 2079 (1981).

1980 (3)

V. O. Kostroun, Nucl. Instrum. Methods 172, 341 (1980).

Y. J. Chabal, A. J. Sievers, Phys. Rev. Lett. 44, 944 (1980).
[CrossRef]

J. R. Stevenson, J. M. Cathcart, Nucl. Instrum. Methods 172, 367 (1980).
[CrossRef]

1978 (4)

P. Lagarde, Infrared Phys. 18, 395 (1978).
[CrossRef]

A. Hofmann, Nucl. Instrum. Methods 152, 17 (1978).
[CrossRef]

G. J. Evans, M. W. Evans, J. Chem. Soc. Chem. Commun. 267 (1978).

A. M. Bradshaw, F. M. Hoffmann, Surf. Sci. 72, 513 (1978).
[CrossRef]

1976 (2)

R. Lopez-Delgado, H. Szwarc, Opt. Commun. 19, 286 (1976).
[CrossRef]

P. Meyer, P. Lagarde, J. Phys. 37, 1387 (1976).
[CrossRef]

1975 (1)

R. G. Greenler, J. Vac. Sci. Technol. 12, 1410 (1975).
[CrossRef]

1973 (1)

1966 (1)

R. G. Greenler, J. Chem. Phys. 44, 310 (1966).
[CrossRef]

1960 (1)

M. W. Evans, C. J. Reid, Mol. Phys. 40, 1523 (1960).

1959 (1)

K. C. Westfold, Astrophys J. 130, 241 (1959).
[CrossRef]

1949 (1)

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[CrossRef]

Baker, E. A. M.

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

Bartlett, D. V.

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

Bartlett, R.

Bell, A. T.

A. T. Bell, M. L. Mair, Vibrational Spectroscopy of Adsorbed Species (American Chemical Society, Washington, D.C., 1980).
[CrossRef]

Bradshaw, A. M.

A. M. Bradshaw, F. M. Hoffmann, Surf. Sci. 72, 513 (1978).
[CrossRef]

Cathcart, J. M.

J. R. Stevenson, J. M. Cathcart, Nucl. Instrum. Methods 172, 367 (1980).
[CrossRef]

Chabal, Y. J.

Y. J. Chabal, A. J. Sievers, Phys. Rev. Lett. 44, 944 (1980).
[CrossRef]

Chamberlain, J.

J. Chamberlain, Principles of Interferometric Spectroscopy (Wiley, New York, 1979), p. 217.

Clark, W. M. M.

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

Clarke, G. F.

R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
[CrossRef]

Coïsson, R.

R. Coïsson, Institute di Sisica, Univ. di Parma, private communication.

Costley, A. E.

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

Duncan, W. D.

W. D. Duncan, J. Yarwood, “First Detection of Far-Infrared Photons from a Synchrotron Radiation Source,” DL/SCI/TM 32E (Daresbury Laboratory, 1982).

Ellis, H.

Evans, G. J.

G. J. Evans, M. W. Evans, J. Chem. Soc. Chem. Commun. 267 (1978).

Evans, M. W.

G. J. Evans, M. W. Evans, J. Chem. Soc. Chem. Commun. 267 (1978).

M. W. Evans, C. J. Reid, Mol. Phys. 40, 1523 (1960).

Gibson, A. F.

A. F. Gibson, M. F. Kimmitt, “Photon Drag Detection,” Infrared and Millimeter Waves, Vol. 3, K. J. Button, Ed. (Academic, New York1980), Chap. 5.

Goddard, P. A.

R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
[CrossRef]

Green, G. K.

G. K. Green, “Spectra and Optics of Synchrotron Radiation,” Sec. 1, Proposal for a National Synchrotron Light Source, Vol. 2, J. P. Blewett, Ed., BNL-50595 (Brookhaven National Laboratory, 1977).

Greenler, R. G.

R. G. Greenler, J. Vac. Sci. Technol. 12, 1410 (1975).
[CrossRef]

R. G. Greenler, J. Chem. Phys. 44, 310 (1966).
[CrossRef]

Hoffmann, F. M.

A. M. Bradshaw, F. M. Hoffmann, Surf. Sci. 72, 513 (1978).
[CrossRef]

Hofmann, A.

A. Hofmann, Nucl. Instrum. Methods 152, 17 (1978).
[CrossRef]

Izatt, J. R.

F. Kremer, J. R. Izatt, in Infrared and Millimeter Waves, Vol. 2, K. J. Button, Ed. (Plenum, New York, 1981), p. 675.
[CrossRef]

Jacobs, S. F.

S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).

Kiff, M. G.

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

Kimmitt, M. F.

A. F. Gibson, M. F. Kimmitt, “Photon Drag Detection,” Infrared and Millimeter Waves, Vol. 3, K. J. Button, Ed. (Academic, New York1980), Chap. 5.

Kostroun, V. O.

V. O. Kostroun, Nucl. Instrum. Methods 172, 341 (1980).

Kremer, F.

F. Kremer, J. R. Izatt, in Infrared and Millimeter Waves, Vol. 2, K. J. Button, Ed. (Plenum, New York, 1981), p. 675.
[CrossRef]

Kunath, D.

C. Peuker, D. Kunath, J. Chem. Soc. Faraday Trans. 177, 2079 (1981).

Lagarde, P.

P. Lagarde, Infrared Phys. 18, 395 (1978).
[CrossRef]

P. Meyer, P. Lagarde, J. Phys. 37, 1387 (1976).
[CrossRef]

Lopez-Delgado, R.

R. Lopez-Delgado, H. Szwarc, Opt. Commun. 19, 286 (1976).
[CrossRef]

Mair, M. L.

A. T. Bell, M. L. Mair, Vibrational Spectroscopy of Adsorbed Species (American Chemical Society, Washington, D.C., 1980).
[CrossRef]

Meyer, P.

P. Meyer, P. Lagarde, J. Phys. 37, 1387 (1976).
[CrossRef]

Michel, F. C.

F. C. Michel, Phys. Rev. Lett. 48, 580 (1982).
[CrossRef]

Munro, I. H.

I. H. Munro, “Synchrotron Radiation as a Source to Study Time Dependent Phenomena,” Preprint DL/SCI/P 298E (Daresbury Laboratory, 1981).

Neill, G. F.

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

Peuker, C.

C. Peuker, D. Kunath, J. Chem. Soc. Faraday Trans. 177, 2079 (1981).

Pilloff, M. S.

S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).

Reid, C. J.

M. W. Evans, C. J. Reid, Mol. Phys. 40, 1523 (1960).

Sargent, M.

S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).

Schwinger, J.

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[CrossRef]

Scully, M. O.

S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).

Sievers, A. J.

Y. J. Chabal, A. J. Sievers, Phys. Rev. Lett. 44, 944 (1980).
[CrossRef]

Sokolov, A. A.

A. A. Sokolov, I. M. Ternov, Synchrotron Radiation (Pergamon, Oxford, 1968).

Spitzer, R.

S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).

Stevenson, J. R.

J. R. Stevenson, J. M. Cathcart, Nucl. Instrum. Methods 172, 367 (1980).
[CrossRef]

J. R. Stevenson, H. Ellis, R. Bartlett, Appl. Opt. 12, 2884 (1973).
[CrossRef] [PubMed]

Szwarc, H.

R. Lopez-Delgado, H. Szwarc, Opt. Commun. 19, 286 (1976).
[CrossRef]

Tanner, B. K.

R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
[CrossRef]

Ternov, I. M.

A. A. Sokolov, I. M. Ternov, Synchrotron Radiation (Pergamon, Oxford, 1968).

Westfold, K. C.

K. C. Westfold, Astrophys J. 130, 241 (1959).
[CrossRef]

Whatmore, R. W.

R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
[CrossRef]

Williams, G. P.

G. P. Williams, Nucl. Instrum. Methods 195, 383 (1982).
[CrossRef]

Wood, J. L.

J. L. Wood, in Spectroscopy and Structure of Molecular Complexes, J. Yarwood, Ed. (Plenum, New York, 1973), Chap. 4, p. 303.

Yarwood, J.

W. D. Duncan, J. Yarwood, “First Detection of Far-Infrared Photons from a Synchrotron Radiation Source,” DL/SCI/TM 32E (Daresbury Laboratory, 1982).

Appl. Opt. (1)

Astrophys J. (1)

K. C. Westfold, Astrophys J. 130, 241 (1959).
[CrossRef]

Infrared Phys. (1)

P. Lagarde, Infrared Phys. 18, 395 (1978).
[CrossRef]

J. Chem. Phys. (1)

R. G. Greenler, J. Chem. Phys. 44, 310 (1966).
[CrossRef]

J. Chem. Soc. Chem. Commun. (1)

G. J. Evans, M. W. Evans, J. Chem. Soc. Chem. Commun. 267 (1978).

J. Chem. Soc. Faraday Trans. (1)

C. Peuker, D. Kunath, J. Chem. Soc. Faraday Trans. 177, 2079 (1981).

J. Phys. (1)

P. Meyer, P. Lagarde, J. Phys. 37, 1387 (1976).
[CrossRef]

J. Vac. Sci. Technol. (1)

R. G. Greenler, J. Vac. Sci. Technol. 12, 1410 (1975).
[CrossRef]

Mol. Phys. (1)

M. W. Evans, C. J. Reid, Mol. Phys. 40, 1523 (1960).

Nature London (1)

R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clarke, Nature London 299, 44 (1982).
[CrossRef]

Nucl. Instrum. Methods (4)

J. R. Stevenson, J. M. Cathcart, Nucl. Instrum. Methods 172, 367 (1980).
[CrossRef]

G. P. Williams, Nucl. Instrum. Methods 195, 383 (1982).
[CrossRef]

V. O. Kostroun, Nucl. Instrum. Methods 172, 341 (1980).

A. Hofmann, Nucl. Instrum. Methods 152, 17 (1978).
[CrossRef]

Opt. Commun. (1)

R. Lopez-Delgado, H. Szwarc, Opt. Commun. 19, 286 (1976).
[CrossRef]

Phys. Rev. (1)

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[CrossRef]

Phys. Rev. Lett. (2)

Y. J. Chabal, A. J. Sievers, Phys. Rev. Lett. 44, 944 (1980).
[CrossRef]

F. C. Michel, Phys. Rev. Lett. 48, 580 (1982).
[CrossRef]

Surf. Sci. (1)

A. M. Bradshaw, F. M. Hoffmann, Surf. Sci. 72, 513 (1978).
[CrossRef]

Other (16)

G. K. Green, “Spectra and Optics of Synchrotron Radiation,” Sec. 1, Proposal for a National Synchrotron Light Source, Vol. 2, J. P. Blewett, Ed., BNL-50595 (Brookhaven National Laboratory, 1977).

Synchrotron Radiation Source (SRS), Science and Engineering Research Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire, U.K. National Synchrotron Light Source (NSLS) VUV Ring, Brookhaven National Laboratory, Upton, New York 11973. Berliner Elektronenspeicherring-Gesellschaft f. Synchrotronstrahlung MbH BESSY, D-1000 Berlin, 33, Federal Republic of Germany.

W. D. Duncan, J. Yarwood, “First Detection of Far-Infrared Photons from a Synchrotron Radiation Source,” DL/SCI/TM 32E (Daresbury Laboratory, 1982).

A. A. Sokolov, I. M. Ternov, Synchrotron Radiation (Pergamon, Oxford, 1968).

I. H. Munro, “Synchrotron Radiation as a Source to Study Time Dependent Phenomena,” Preprint DL/SCI/P 298E (Daresbury Laboratory, 1981).

M. Abramowitz, I. A. Stegun, Eds, Handbook of Mathematical Functions (Dover, New York, 1965).

R. Coïsson, Institute di Sisica, Univ. di Parma, private communication.

H. Winick, T. Knight, Eds. “Wiggler Magnets,” Stanford University Report SSRP 77/05 (May1977).

S. F. Jacobs, M. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, “Free-electron Generators of Coherent Radiation,” in Physics of Quantum Electronics, Vol. 7 (Addison-Wesley, Reading, Mass., 198x).

G. V. Marr, D. J. Thompson, Eds. An Optimized Vacuum Ultraviolet Storage Ring (North-Holland, Amsterdam, 1981).

J. Chamberlain, Principles of Interferometric Spectroscopy (Wiley, New York, 1979), p. 217.

A. T. Bell, M. L. Mair, Vibrational Spectroscopy of Adsorbed Species (American Chemical Society, Washington, D.C., 1980).
[CrossRef]

A. E. Costley, E. A. M. Baker, D. V. Bartlett, W. M. M. Clark, M. G. Kiff, G. F. Neill, “Feasibility of Diagnosing the Jet Plasma using Electron Cyclotron Emission,” NPL Report DES-623 (National Physical Laboratory, Teddington, 1980).

F. Kremer, J. R. Izatt, in Infrared and Millimeter Waves, Vol. 2, K. J. Button, Ed. (Plenum, New York, 1981), p. 675.
[CrossRef]

A. F. Gibson, M. F. Kimmitt, “Photon Drag Detection,” Infrared and Millimeter Waves, Vol. 3, K. J. Button, Ed. (Academic, New York1980), Chap. 5.

J. L. Wood, in Spectroscopy and Structure of Molecular Complexes, J. Yarwood, Ed. (Plenum, New York, 1973), Chap. 4, p. 303.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Universal synchrotron radiation spectrum: the number of photons in a wavelength resolution interval of unity/mA/mrad/GeV of electron energy.

Fig. 2
Fig. 2

Coordinate system for describing the emission of radiation by electrons in a storage ring: ρ, bending radius; D, orbit length; ψ, vertical angle; θ, horizontal angle; l, length of orbit coupled into beamline l/ρ = 0.

Fig. 3
Fig. 3

Plot, as a function of ψ, of the parallel and perpendicular polarization components F(λ/2λc), F(λ/2λc), of the 1000-Å radiation emitted by 2-GeV electrons in a storage ring with a bending radius of 555.9 cm.

Fig. 4
Fig. 4

Comparison, as a function of wavelength, of the halfwidths at half-maximum of Fc/2λ,ψ) for the SRS and NSLS (VUV) machines with the equivalent halfwidths determined using Eq. (20) divided by 2.

Fig. 5
Fig. 5

Plot as a function of wavelength and temperature of the machine-independent synchrotron radiation/blackbody comparison function X(λ,T).

Fig. 6
Fig. 6

Graphs of the area–solid angle product of the Daresbury (SRS) and NSLS (VUV) machines assuming 50-mrad horizontal angular coupling.

Fig. 7
Fig. 7

Brightness advantage, in comparison with 2000 K blackbody, of synchrotron radiation throughout the infrared for the Daresbury (SRS) and the proposed SRS high brightness lattice (HBL) and NSLS (VUV) machines. The curves assume a current of 1 A and a horizontal angle of 50 mrad.

Fig. 8
Fig. 8

Plots of the solid angle limited resolving power for interferometers29 and grating instruments assuming the area–solid angle products of Fig. 6 and a beam area of 50 cm2.

Fig. 9
Fig. 9

Power ratio PR for synchrotron radiation over a 2000 K blackbody for the Daresbury (SRS) and NSLS (VUV) machines. The parameters for the comparison are −θ = 80 × 10−3 rad, R = 1250, and i = 350 mA.

Fig. 10
Fig. 10

Preliminary power P(ν) (watts in a 0.1% bandwidth)and equivalent temperature measurements on the far-infrared flux emerging from the infrared port at the SRS (Daresbury). The current is 350 mA, the horizontal collection angle is 80 mrad, and the vertical 60 mrad. At least a factor of 2 more power should be available on a simple improvement of the optics of the beam line.

Fig. 11
Fig. 11

Optics for producing an isochronous focus. The path of the electrons is shown dashed. The mirror is designed so that AB + BF = AA√1 − 1/γ2 + A′B′ + B′F for any tangent point A′.

Tables (3)

Tables Icon

Table I Some Parameters of Storage Rings Used as Synchrotron Radiation Sources

Tables Icon

Table II Coupling of Parallel and Perpendicular Components (as a Percentage of the Total Vertically Integrated Distribution) as a Function of Wavelength and Vertical Angle for the SRS at Daresbury and the NSLS (VUV) at Brookhaven

Tables Icon

Table III Comparison of the Emittance Squared for a Blackbody (BB) Source and the NSLS VUV Ring in the Infrared Region and the Matching Efficiency PTO

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

d 3 P ( λ ) dId θ d λ = 3 5 / 2 160 π 2 e c γ 7 ρ 2 ( λ c λ ) 3 y K 5 / 3 ( η ) d η ( cgs units ) ,
N ( λ ) Δ λ = ( E i θ R ) × 2.4567 × 10 13 ( λ c λ ) × y K 5 / 3 ( η ) d η ( photons / sec ) ,
λ c = 4 π ρ 3 γ 3 ,
γ = 1956.8 E ( GeV ) ,
γ = 1.066 E ( GeV ) .
P = 8840 × E 4 ρ I ( kW ) ,
d 2 P d ψ d λ = 27 e c 320 π 3 γ 8 ρ 2 ( λ c λ ) 4 I θ F ( λ c / 2 λ , ψ ) ,
F ( λ c / 2 λ , ψ ) = F + F = [ ( 1 + X ) 2 K 2 / 3 2 ( ξ ) ] + [ X ( 1 + X ) K 1 / 3 2 ( ξ ) ]
J ( ψ ) = F F + F .
d 2 P d ψ d λ = 3.9183 × 10 15 γ 8 ρ 2 ( λ c λ ) 4 i θ F ( λ c / 2 λ , ψ ) W / rad / cm ,
ρ ( cm ) E 3 ( GeV ) 1.8 × 10 9 r λ IR ,
ρ E 3 1.8 × 10 3 .
E 400 MeV .
d P ( λ ) d λ = 8.6416 × 10 13 i θ ρ 1 / 3 λ 7 / 3 G W / cm ,
d P ( ψ = 0 ) d λ d ψ = 5.2 × 10 13 i θ ρ 2 / 3 λ 8 / 3 H W / rad / cm ,
d N d λ = 4.35 × 10 10 i θ ρ 1 / 3 λ 4 / 3 G photons / sec / cm ,
d N d λ d ψ = 2.618 × 10 10 i θ ρ 2 / 3 λ 8 / 3 H photons / sec / rad / cm ,
G = [ 1 2.193 1 γ 2 ( ρ λ ) 2 / 3 ] ,
H = [ 1 6.312 1 γ 4 ( ρ λ ) 4 / 3 ] .
F ( λ c / 2 λ , ψ ) d ψ = F ( λ c / 2 λ , θ ) Ψ ¯ ,
Ψ ¯ = 1.66188 ( λ / ρ ) 1 / 3 G rad .
IBR = B SRS B BB = i ρ 2 / 3 A SRS ( θ , ψ ) × X ( λ , T ) ,
X ( λ , T ) = 4.366 × 10 2 λ 7 / 3 [ exp ( h c / λ k T ) 1 ] ( λ in cm ) .
ABR = i × ρ 2 / 3 A SRS ( θ ) + λ 2 / Ω SRS X ( λ , T ) . machine operation parameter machine dependent parameter universal curve
Ω SRS = 1.66188 × 10 3 θ ( λ ρ ) 1 / 3 G ,
PR = IBR ( A Ω ) SRS ( A Ω ) BB = i ρ 2 / 3 X ( λ , T ) ( Ω SRS A Ω BB ) ,
1 Ψ ¯ F ( ψ = 0 ) ψ ψ F d ψ and 1 Ψ ¯ F ( ψ = 0 ) ψ ψ F d ψ
Ω g r = n R 2 ,
Ω i n = 2 π R .
A Ω BB = 100 π R cm 2 sr .
PR = 5.29 × 10 6 θ i ρ 1 / 3 λ 1 / 3 R X ( λ , T ) .
N max = D c T rf = T orb T rf ,
n e = 1 N I c 10 e T orb = 1 N T orb × 6.24 × 10 18 ,
P peak P av T orb τ BL × 1 N × c T orb 2 π ρ .
λ log e ( n e ) π τ BL ,
A c λ
f = 100 F ( ψ = 0 ) Ψ ¯ ψ ψ F ( λ c / 2 λ , ψ ) d ψ
f = 100 F ( ψ = 0 ) Ψ ¯ ψ ψ F ( λ c / 2 λ , ψ ) d ψ

Metrics