Abstract

A quantitative derivation is presented for the production of the photodisplacement signal of a sample that is periodically heated by the absorption of modulated light. Numerical estimates are presented for the surface displacement of typical solids; they show us that one may get signals well above the thermal noise.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Nordal, S. O. Kanstad, Phys. Scr. 20, 659 (1979).
    [CrossRef]
  2. S. O. Kanstad, P. E. Nordal, Powder Technol. 22, 133 (1978).
    [CrossRef]
  3. R. Santos, L. C. M. Miranda, I.A.P. 52, 4194 (1981).
  4. A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
    [CrossRef]
  5. R. M. White, J. Appl. Phys. 34, 3559 (1963).
    [CrossRef]
  6. J. B. Callis, J. Res. Natl. Bur. Stand. Sect. A 80, 413 (1976).
    [CrossRef]
  7. A. Hordvik, H. Schlossberg, Appl. Opt. 16, 101 (1977).
    [CrossRef] [PubMed]
  8. M. M. Farrow, R. K. Burnham, M. Auzanneau, S. L. Olsen, N. Purdie, E. M. Eyring, Appl. Opt. 17, 1093 (1978).
    [CrossRef] [PubMed]
  9. G. C. Wetsel, in Digest of Topical Meeting on Photoacoustic Spectroscopy (Optical Society of America, Washington, D.C., 1979).
  10. W. Jackson, N. M. Amer, J.Appl. Phys. 51, 3343 (1980).
    [CrossRef]
  11. Y. Martin, H. K. Wickramasinghe, E. A. Ash, 1982 IEEE Ultrasonics Symposium, San Diego (1982), paper EE-5.
  12. F. A. MacDonald, Appl. Phys. Lett. 36, 123 (1980).
    [CrossRef]
  13. F. A. McDonald, G. C. Wetsel, J. Appl. Phys. 49, 2313 (1978).
    [CrossRef]
  14. P. M. Morse, K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).
  15. R. N. Thurston, Physical Acoustics Part A (Academic, New York, 1964), Vol. 1.
  16. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).
  17. A. J. Moses, Optical Materials Properties (Plenum, New York, 1971).

1981 (1)

R. Santos, L. C. M. Miranda, I.A.P. 52, 4194 (1981).

1980 (3)

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

W. Jackson, N. M. Amer, J.Appl. Phys. 51, 3343 (1980).
[CrossRef]

F. A. MacDonald, Appl. Phys. Lett. 36, 123 (1980).
[CrossRef]

1979 (1)

P. E. Nordal, S. O. Kanstad, Phys. Scr. 20, 659 (1979).
[CrossRef]

1978 (3)

S. O. Kanstad, P. E. Nordal, Powder Technol. 22, 133 (1978).
[CrossRef]

F. A. McDonald, G. C. Wetsel, J. Appl. Phys. 49, 2313 (1978).
[CrossRef]

M. M. Farrow, R. K. Burnham, M. Auzanneau, S. L. Olsen, N. Purdie, E. M. Eyring, Appl. Opt. 17, 1093 (1978).
[CrossRef] [PubMed]

1977 (1)

1976 (1)

J. B. Callis, J. Res. Natl. Bur. Stand. Sect. A 80, 413 (1976).
[CrossRef]

1963 (1)

R. M. White, J. Appl. Phys. 34, 3559 (1963).
[CrossRef]

Amer, N. M.

W. Jackson, N. M. Amer, J.Appl. Phys. 51, 3343 (1980).
[CrossRef]

Ash, E. A.

Y. Martin, H. K. Wickramasinghe, E. A. Ash, 1982 IEEE Ultrasonics Symposium, San Diego (1982), paper EE-5.

Auzanneau, M.

Badoz, J.

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Boccara, A. C.

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Burnham, R. K.

Callis, J. B.

J. B. Callis, J. Res. Natl. Bur. Stand. Sect. A 80, 413 (1976).
[CrossRef]

Eyring, E. M.

Farrow, M. M.

Fournier, D.

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Grove, A. S.

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).

Hordvik, A.

Ingard, K. U.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

Jackson, W.

W. Jackson, N. M. Amer, J.Appl. Phys. 51, 3343 (1980).
[CrossRef]

Kanstad, S. O.

P. E. Nordal, S. O. Kanstad, Phys. Scr. 20, 659 (1979).
[CrossRef]

S. O. Kanstad, P. E. Nordal, Powder Technol. 22, 133 (1978).
[CrossRef]

MacDonald, F. A.

F. A. MacDonald, Appl. Phys. Lett. 36, 123 (1980).
[CrossRef]

Martin, Y.

Y. Martin, H. K. Wickramasinghe, E. A. Ash, 1982 IEEE Ultrasonics Symposium, San Diego (1982), paper EE-5.

McDonald, F. A.

F. A. McDonald, G. C. Wetsel, J. Appl. Phys. 49, 2313 (1978).
[CrossRef]

Miranda, L. C. M.

R. Santos, L. C. M. Miranda, I.A.P. 52, 4194 (1981).

Morse, P. M.

P. M. Morse, K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

Moses, A. J.

A. J. Moses, Optical Materials Properties (Plenum, New York, 1971).

Nordal, P. E.

P. E. Nordal, S. O. Kanstad, Phys. Scr. 20, 659 (1979).
[CrossRef]

S. O. Kanstad, P. E. Nordal, Powder Technol. 22, 133 (1978).
[CrossRef]

Olsen, S. L.

Purdie, N.

Santos, R.

R. Santos, L. C. M. Miranda, I.A.P. 52, 4194 (1981).

Schlossberg, H.

Thurston, R. N.

R. N. Thurston, Physical Acoustics Part A (Academic, New York, 1964), Vol. 1.

Wetsel, G. C.

F. A. McDonald, G. C. Wetsel, J. Appl. Phys. 49, 2313 (1978).
[CrossRef]

G. C. Wetsel, in Digest of Topical Meeting on Photoacoustic Spectroscopy (Optical Society of America, Washington, D.C., 1979).

White, R. M.

R. M. White, J. Appl. Phys. 34, 3559 (1963).
[CrossRef]

Wickramasinghe, H. K.

Y. Martin, H. K. Wickramasinghe, E. A. Ash, 1982 IEEE Ultrasonics Symposium, San Diego (1982), paper EE-5.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. A. MacDonald, Appl. Phys. Lett. 36, 123 (1980).
[CrossRef]

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

I.A.P. (1)

R. Santos, L. C. M. Miranda, I.A.P. 52, 4194 (1981).

J. Appl. Phys. (2)

F. A. McDonald, G. C. Wetsel, J. Appl. Phys. 49, 2313 (1978).
[CrossRef]

R. M. White, J. Appl. Phys. 34, 3559 (1963).
[CrossRef]

J. Res. Natl. Bur. Stand. Sect. A (1)

J. B. Callis, J. Res. Natl. Bur. Stand. Sect. A 80, 413 (1976).
[CrossRef]

J.Appl. Phys. (1)

W. Jackson, N. M. Amer, J.Appl. Phys. 51, 3343 (1980).
[CrossRef]

Phys. Scr. (1)

P. E. Nordal, S. O. Kanstad, Phys. Scr. 20, 659 (1979).
[CrossRef]

Powder Technol. (1)

S. O. Kanstad, P. E. Nordal, Powder Technol. 22, 133 (1978).
[CrossRef]

Other (6)

Y. Martin, H. K. Wickramasinghe, E. A. Ash, 1982 IEEE Ultrasonics Symposium, San Diego (1982), paper EE-5.

G. C. Wetsel, in Digest of Topical Meeting on Photoacoustic Spectroscopy (Optical Society of America, Washington, D.C., 1979).

P. M. Morse, K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

R. N. Thurston, Physical Acoustics Part A (Academic, New York, 1964), Vol. 1.

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).

A. J. Moses, Optical Materials Properties (Plenum, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Typical PDT experimental arrangement.

Fig. 2
Fig. 2

Schematic 1-D configuration for the PDT theory.

Tables (1)

Tables Icon

Table I Values of the Physical Parameters Used in the Text

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

S PD = R + R s + 2 ( R R s ) 1 / 2 cos [ 4 π λ ( Δ L + Δ l ) ] ,
S PD = R + R s 2 ( R R s ) 1 / 2 cos ( 4 π Δ l λ ) .
η 2 β I 0 exp ( β x ) exp ( j ω t ) ,
2 P s ρ s B 2 p s t 2 = ρ s β T 2 ϕ s t 2 ,
Δ l = 1 ω 2 ρ s ( p s x ) x = 0 .
2 ϕ s x 2 = 1 α s ϕ s t η β I 0 2 K s exp ( β x ) exp ( j ω t ) , 0 < x < l ,
K s ϕ s ( O ) = K g ϕ g ( O ) ; K s ϕ s ( l ) = K g ϕ g ( l ) , ϕ s ( O ) = ϕ g ( O ) ; ϕ s ( l ) = ϕ g ( l ) ,
2 ϕ g x 2 = 1 α g ϕ g t , for x < 0 and x > l .
ϕ s ( x , t ) = [ C exp ( σ s x ) + D exp ( σ s x ) + E exp ( β x ) ] exp ( j ω t ) ,
ϕ g ( x , t ) = θ 1 exp ( σ g x ) exp ( j ω t ) ,
ϕ g ( x , t ) = θ 2 exp ( σ g x ) exp ( j ω t ) ,
C = 1 2 ( r 1 ) E + 1 2 ( 1 + g ) θ 1 ,
D = 1 2 ( r + 1 ) E + 1 2 ( 1 g ) θ 1 ,
E = η β I 0 2 K s ( β 2 σ s 2 ) ,
θ 1 = [ 2 ( r g ) exp ( β l ) ( 1 + g ) ( r 1 ) exp ( l σ s ) ( 1 g ) ( r + 1 ) exp ( l σ s ) ] [ ( 1 + g ) 2 exp ( l σ s ) ( 1 g ) 2 exp ( l σ s ) ] E .
p s ( x ) = d as [ A exp ( j k s l ) + B exp ( j k s l ) ] + d ts [ C exp ( σ s x ) + D exp ( σ s x ) ] + d β E exp ( β x ) ,
Δ l = β T β 2 l ( r 2 { [ exp ( l σ s ) exp ( l σ s ) ] r E 2 + ( E θ 1 ) 1 2 ( E θ 1 ) [ exp ( l σ s ) + exp ( l σ s ) ] } + [ 1 exp ( β l ) ] E + β l ( r 2 1 ) E ) .
θ 1 ( r 1 ) E and E θ 1 r E ,
Δ l = η β T I 0 2 K s ( β 2 σ s 2 ) { ( β 2 σ s 2 1 ) + 1 exp ( β l ) β l } .
Δ l = j η α s β T I 0 2 K s ω .
Δ l = j η α s β T I 0 2 K s ω { 1 , for β l 1 , β l 2 , for β l 1 .
θ 1 [ exp ( β l ) 1 ] l σ s rE ,
Δ l = η β T I 0 2 K s ( β 2 σ s 2 ) [ 1 β l exp ( β l ) ] β l .
Δ l = η β T I 0 2 K s β 2 { 1 , for β l 1 , β l 2 , for β l 1 .
Δ l = j η β τ α s I 0 2 K s ω β l 2 ,
| Δ l | CdS = 45.7 P L f d 2 Å , | Δ l | GaAs = 67.5 P L f d 2 Å ,

Metrics