Abstract

A device utilizing four inversion layer photodiodes in a light-trapping arrangement was constructed and tested. The device was found to have a photon-to-electron conversion efficiency of 0.999 for short wavelength and low power visible radiation. It was found that applying a reverse bias voltage extended the high quantum efficiency response over the entire visible spectrum and up to the highest radiant power level studied (several milliwatts). Several radiometrically important characteristics were studied and the results presented: spectral reflectance; polarization sensitivity; quantum efficiency vs wavelength, photon flux density, and reverse bias voltage; and dark current vs reverse bias.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Zalewski, J. Geist, Appl. Opt. 19, 1214 (1980).
    [CrossRef] [PubMed]
  2. J. Geist, E. F. Zalewski, A. R. Schaefer, Appl. Opt. 19, 3795 (1980).
    [CrossRef] [PubMed]
  3. C. G. Hughes, Appl. Opt. 21, 2129 (1982).
    [CrossRef]
  4. J. Geist, J. Appl. Phys. 51, 3993 (1980).
    [CrossRef]
  5. J. Geist, E. Liang, A. R. Schaefer, J. Appl. Phys. 52, 4879 (1981).
    [CrossRef]
  6. T. E. Hansen, Phys. Scr. 18, 471 (1978).
    [CrossRef]
  7. J. B. Fowler, M. A. Lind, E. F. Zalewski, Natl. Bur. Stand. U.S. Tech. Note 987 (1979).
  8. J. Geist, L. B. Schmidt, W. E. Case, Appl. Opt. 12, 2273 (1973).
  9. A. R. Schaefer, E. F. Zalewski, J. Geist, Appl. Opt. 22, 1232 (1983).
    [CrossRef] [PubMed]
  10. W. Budde, Appl. Opt. 18, 1555 (1979).
    [CrossRef] [PubMed]
  11. W. Budde, Appl. Opt. 21, 3699 (1982).
    [CrossRef] [PubMed]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965), p. 632.
  13. H. R. Philipp, J. Appl. Phys.43, 2835 (1972); and private communication.
    [CrossRef]
  14. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]
  15. F. J. Wilkinson, A. J. D. Farmer, J. Geist, J. Appl. Phys. 54, 1172 (1983).
    [CrossRef]
  16. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 150.
  17. J. Geist, E. F. Zalewski, Appl. Phys. Lett. 35, 503 (1979).
    [CrossRef]
  18. J. Geist, W. K. Gladden, E. F. Zalewski, J. Opt. Soc. Am. 72, 1068 (1982).
    [CrossRef]
  19. J. Geist, A. J. D. Farmer, P. J. Martin, F. J. Wilkinson, S. J. Collocott, Appl. Opt. 21, 1130 (1982).
    [CrossRef] [PubMed]

1983

A. R. Schaefer, E. F. Zalewski, J. Geist, Appl. Opt. 22, 1232 (1983).
[CrossRef] [PubMed]

F. J. Wilkinson, A. J. D. Farmer, J. Geist, J. Appl. Phys. 54, 1172 (1983).
[CrossRef]

1982

1981

J. Geist, E. Liang, A. R. Schaefer, J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

1980

1979

J. B. Fowler, M. A. Lind, E. F. Zalewski, Natl. Bur. Stand. U.S. Tech. Note 987 (1979).

W. Budde, Appl. Opt. 18, 1555 (1979).
[CrossRef] [PubMed]

J. Geist, E. F. Zalewski, Appl. Phys. Lett. 35, 503 (1979).
[CrossRef]

1978

T. E. Hansen, Phys. Scr. 18, 471 (1978).
[CrossRef]

1973

J. Geist, L. B. Schmidt, W. E. Case, Appl. Opt. 12, 2273 (1973).

1965

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965), p. 632.

Budde, W.

Case, W. E.

J. Geist, L. B. Schmidt, W. E. Case, Appl. Opt. 12, 2273 (1973).

Collocott, S. J.

Farmer, A. J. D.

Fowler, J. B.

J. B. Fowler, M. A. Lind, E. F. Zalewski, Natl. Bur. Stand. U.S. Tech. Note 987 (1979).

Geist, J.

Gladden, W. K.

Grove, A. S.

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 150.

Hansen, T. E.

T. E. Hansen, Phys. Scr. 18, 471 (1978).
[CrossRef]

Hughes, C. G.

Liang, E.

J. Geist, E. Liang, A. R. Schaefer, J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

Lind, M. A.

J. B. Fowler, M. A. Lind, E. F. Zalewski, Natl. Bur. Stand. U.S. Tech. Note 987 (1979).

Malitson, I. H.

Martin, P. J.

Philipp, H. R.

H. R. Philipp, J. Appl. Phys.43, 2835 (1972); and private communication.
[CrossRef]

Schaefer, A. R.

Schmidt, L. B.

J. Geist, L. B. Schmidt, W. E. Case, Appl. Opt. 12, 2273 (1973).

Wilkinson, F. J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965), p. 632.

Zalewski, E. F.

Appl. Opt.

Appl. Phys. Lett.

J. Geist, E. F. Zalewski, Appl. Phys. Lett. 35, 503 (1979).
[CrossRef]

J. Appl. Phys.

F. J. Wilkinson, A. J. D. Farmer, J. Geist, J. Appl. Phys. 54, 1172 (1983).
[CrossRef]

J. Geist, J. Appl. Phys. 51, 3993 (1980).
[CrossRef]

J. Geist, E. Liang, A. R. Schaefer, J. Appl. Phys. 52, 4879 (1981).
[CrossRef]

J. Opt. Soc. Am.

Natl. Bur. Stand. U.S. Tech. Note

J. B. Fowler, M. A. Lind, E. F. Zalewski, Natl. Bur. Stand. U.S. Tech. Note 987 (1979).

Phys. Scr.

T. E. Hansen, Phys. Scr. 18, 471 (1978).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965), p. 632.

H. R. Philipp, J. Appl. Phys.43, 2835 (1972); and private communication.
[CrossRef]

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967), p. 150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical configuration of the four photodiodes (top). The reflected light beam is shown displaced from the incident beam for clarity of illustration.

Fig. 2
Fig. 2

Electrical configuration of the four photodiodes, dc bias, and operational amplifier.

Fig. 3
Fig. 3

Spectral variation of the reflectance of a 140-nm thick layer of SiO2 on Si: A, TE polarized 45° angle of incidence; B, 0° incidence; C, TM polarized 45° incidence.

Fig. 4
Fig. 4

Predicted quantum efficiency of the four photodiode light-trapping devices used in this study: A, TM polarized input; B, unpolarized; C, TE polarized.

Fig. 5
Fig. 5

Measured quantum efficiency at several wavelengths as a function of reverse bias voltage (see Table I): A, 406.7 nm; B, 632.8 nm; C, 676.4 nm; D,E, 799.3 nm. Curves A–D were obtained with a radiant power of ∼2 mW, E, ∼20 μW.

Fig. 6
Fig. 6

Measured quantum efficiency as a function of radiant power level at 406.7 nm ○ and 799.3 nm ●.

Fig. 7
Fig. 7

Ratio of collected to trapped photogenerated charge carriers as a function of radiant power level at 799.3 nm.

Fig. 8
Fig. 8

Dark current vs reverse bias voltage for several different types of silicon photodiode: A,F,G, UV-enhanced boron doped p-n type; B,D, inversion layer (undoped) type; C,E, phosphorus doped n-p type. All are without guard rings.

Fig. 9
Fig. 9

Predicted quantum efficiency of a three-detector spiral configuration light-trapping device showing the effect of two different thicknesses of SiO2: A, 70 nm; B, 140 nm.

Tables (1)

Tables Icon

Table I Experimental Conditions Used in Generating Fig. 5 and Results of a Linear Regression Analysis

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q = I h c ϕ n e λ ,
h c n e = 1 . 2395 × 10 3 ( W nm A 1 ) .
ρ 1 ( 1 ρ 7 ) I 1 / I t 1 ( I 1 / I t ) .
N c / N t = Q / ( 1 Q ) ,

Metrics