Abstract

The investigation of problems of heat transmission in laser-irradiated samples and the relative modelistic approaches acquire particular significance when whole biological specimens are considered. The possibility of employing a theoretical model, generally utilized in laser irradiation of solid materials, is here analyzed in the irradiation of biological samples. Also, experimental modifications of the thermal diffusivity values are related to the energy level of the single optical pulse obtained from a cw Ar+ laser.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Clarke, W. J. Geeraets, W. T. Ham, Appl. Opt. 8, 1051 (1969).
    [CrossRef] [PubMed]
  2. J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
    [CrossRef] [PubMed]
  3. L. A. Priebe, A. J. Welch, IEEE Trans. Biomed. Eng. BME-26, 244 (1979).
    [CrossRef]
  4. T. Halldorsson, J. Langerholc, Appl. Opt. 17, 3948 (1978).
    [CrossRef] [PubMed]
  5. G. Delfino, E. Casale, Appl. Opt. 20, 989 (1981).
    [CrossRef] [PubMed]
  6. Data provided by the thermocouple supplier.
  7. C. P. Cain, A. J. Welch, IEEE Trans. Biomed. Eng. BMW-21, 421 (1974).
    [CrossRef]
  8. W. W. Duley, CO2Lasers: Effects and Applications (Academic, New York, 1976), p. 150.
  9. Page 137 of Ref. 4.
  10. R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1970), Table E-236.
  11. L. R. Evans, C. G. Morgan, Phys. Med. Biol. 14, 205 (1969).
    [CrossRef] [PubMed]

1981 (1)

1979 (1)

L. A. Priebe, A. J. Welch, IEEE Trans. Biomed. Eng. BME-26, 244 (1979).
[CrossRef]

1978 (2)

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

T. Halldorsson, J. Langerholc, Appl. Opt. 17, 3948 (1978).
[CrossRef] [PubMed]

1974 (1)

C. P. Cain, A. J. Welch, IEEE Trans. Biomed. Eng. BMW-21, 421 (1974).
[CrossRef]

1969 (2)

Cain, C. P.

C. P. Cain, A. J. Welch, IEEE Trans. Biomed. Eng. BMW-21, 421 (1974).
[CrossRef]

Casale, E.

Clarke, A. M.

Delfino, G.

Duley, W. W.

W. W. Duley, CO2Lasers: Effects and Applications (Academic, New York, 1976), p. 150.

Eichler, J.

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

Evans, L. R.

L. R. Evans, C. G. Morgan, Phys. Med. Biol. 14, 205 (1969).
[CrossRef] [PubMed]

Geeraets, W. J.

Halldorsson, T.

Ham, W. T.

Knof, J.

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

Langerholc, J.

Lenz, H.

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

Morgan, C. G.

L. R. Evans, C. G. Morgan, Phys. Med. Biol. 14, 205 (1969).
[CrossRef] [PubMed]

Priebe, L. A.

L. A. Priebe, A. J. Welch, IEEE Trans. Biomed. Eng. BME-26, 244 (1979).
[CrossRef]

Salk, J.

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

Schäfer, G.

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

Welch, A. J.

L. A. Priebe, A. J. Welch, IEEE Trans. Biomed. Eng. BME-26, 244 (1979).
[CrossRef]

C. P. Cain, A. J. Welch, IEEE Trans. Biomed. Eng. BMW-21, 421 (1974).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Biomed. Eng. (2)

C. P. Cain, A. J. Welch, IEEE Trans. Biomed. Eng. BMW-21, 421 (1974).
[CrossRef]

L. A. Priebe, A. J. Welch, IEEE Trans. Biomed. Eng. BME-26, 244 (1979).
[CrossRef]

Phys. Med. Biol. (1)

L. R. Evans, C. G. Morgan, Phys. Med. Biol. 14, 205 (1969).
[CrossRef] [PubMed]

Radiat. Environ. Biophys. (1)

J. Eichler, J. Knof, H. Lenz, J. Salk, G. Schäfer, Radiat. Environ. Biophys. 15, 277 (1978).
[CrossRef] [PubMed]

Other (4)

Data provided by the thermocouple supplier.

W. W. Duley, CO2Lasers: Effects and Applications (Academic, New York, 1976), p. 150.

Page 137 of Ref. 4.

R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 1970), Table E-236.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic arrangement: LB, laser beam; ES, electrooptic shutter; M, mirror; L, lens; T, biological target; TC, thermocouple; A, amplifier; and CR, chart recorder.

Fig. 2
Fig. 2

Thermal response of the thermocouple when immersed in a heated water bath at 55° C. The initial level corresponds to room temperature (21.5°C). Vertical, 10.5°C/div.; horizontal, 10 msec/ div.

Fig. 3
Fig. 3

Temperature profiles for pulsed irradiation (▴) on and (▵) under the skin of biological specimens. Pulse duration, 3 sec; wavelength, 5145 Å at 60 mW.

Fig. 4
Fig. 4

Temperatures produced at r = 0 vs irradiation times (b) on and (c) under the skin for 45 mW in power; (a) represents theoretical values on the skin for the same experimental conditions (see text).

Fig. 5
Fig. 5

Thermal pulses at various distances r: (a) 0.3 mm; (b) 0.4 mm; (c) 0.5, mm and (d) 0.6 mm. Vertical, 0.4°C/div; horizontal, 0.5 sec/div.

Fig. 6
Fig. 6

Best fits of square distances from the beam center vs τ time for some pulse energies (OS) on and (US) under the skin.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ ( ξ , ζ , θ ) = 0 θ exp [ ξ 2 / ( θ + 1 ) ] exp ( ζ 2 / θ ) θ 1 / 2 ( θ + 1 ) d θ ,
r 0 = ( 4 k t + d 2 ) 1 / 2 .
T ( 0 , 0 , t ) = ɛ P 0 π 3 / 2 h d tan 1 ( 4 k t / d 2 ) 1 / 2 ,
T ( 0 , 0 , ) = ɛ P 0 / 2 π 1 / 2 h d .

Metrics