Abstract

Remote control of ruby laser pulse length could be achieved over 2 orders of magnitude. The technique for generating such a variability of pulse lengths with the same laser makes use of well-known cavity dumping and mechanical or simple electronic modifications. Short pulses could be lengthened by increasing the parallel capacity of a laser-triggered spark gap.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ewert, Opt. Commun. 28, 379 (1979).
    [CrossRef]
  2. Y. S. Liu, Opt. Lett. 4, 372 (1979).
    [CrossRef] [PubMed]
  3. C. H. Brito Cruz, E. Palange, F. De Martini, Opt. Commun. 39, 331 (1981).
    [CrossRef]
  4. S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
    [CrossRef]
  5. H. Röhr, L. Kellerer, Appl. Phys. Lett. 24, 124 (1974).
    [CrossRef]
  6. B. Gellert, “Pulsschneidesystem zu einem TEA-CO2 Laser,” SFB report 76-N3-010, Sonderforschungsbereich Plasmaphysik Bochum/Jülich, Ruhruniversität, D-4630 Bochum, Germany (1976).
  7. M. Pillsticker, “Effects of Optical Components on the Triggering of Spark Gaps by a Laser Beam,” IPP report 4/102, Garching bei München (Nov. 1972);H. Baumhacker, F. Hofmeister, K. Maischberger, K. H. Schmitter, “Investigation of Two Electrode Spark Gaps by the Focused Beam of a High Power Ruby Laser,” Fifth Symposium on Fusion Technology (1968).
  8. C. Heupts, “Lichtstreuexperimente an einem dichten Z-Pinch,” Diplomarbeit, Ruhruniversität Bochum (1983), unpublished.
  9. J. A. Weiss, L. S. Goldberg, IEEE J. Quantum Electron. QE-8, 757 (1972).
    [CrossRef]

1982 (1)

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

1981 (1)

C. H. Brito Cruz, E. Palange, F. De Martini, Opt. Commun. 39, 331 (1981).
[CrossRef]

1979 (2)

1974 (1)

H. Röhr, L. Kellerer, Appl. Phys. Lett. 24, 124 (1974).
[CrossRef]

1972 (1)

J. A. Weiss, L. S. Goldberg, IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

Arad, B.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Brito Cruz, C. H.

C. H. Brito Cruz, E. Palange, F. De Martini, Opt. Commun. 39, 331 (1981).
[CrossRef]

De Martini, F.

C. H. Brito Cruz, E. Palange, F. De Martini, Opt. Commun. 39, 331 (1981).
[CrossRef]

Eliezer, S.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Ewert, P.

P. Ewert, Opt. Commun. 28, 379 (1979).
[CrossRef]

Gazit, Y.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Gellert, B.

B. Gellert, “Pulsschneidesystem zu einem TEA-CO2 Laser,” SFB report 76-N3-010, Sonderforschungsbereich Plasmaphysik Bochum/Jülich, Ruhruniversität, D-4630 Bochum, Germany (1976).

Goldberg, L. S.

J. A. Weiss, L. S. Goldberg, IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

Heupts, C.

C. Heupts, “Lichtstreuexperimente an einem dichten Z-Pinch,” Diplomarbeit, Ruhruniversität Bochum (1983), unpublished.

Jackel, S.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Kellerer, L.

H. Röhr, L. Kellerer, Appl. Phys. Lett. 24, 124 (1974).
[CrossRef]

Laluz, R.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Liu, Y. S.

Paiss, Y.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Palange, E.

C. H. Brito Cruz, E. Palange, F. De Martini, Opt. Commun. 39, 331 (1981).
[CrossRef]

Pillsticker, M.

M. Pillsticker, “Effects of Optical Components on the Triggering of Spark Gaps by a Laser Beam,” IPP report 4/102, Garching bei München (Nov. 1972);H. Baumhacker, F. Hofmeister, K. Maischberger, K. H. Schmitter, “Investigation of Two Electrode Spark Gaps by the Focused Beam of a High Power Ruby Laser,” Fifth Symposium on Fusion Technology (1968).

Röhr, H.

H. Röhr, L. Kellerer, Appl. Phys. Lett. 24, 124 (1974).
[CrossRef]

Szichman, H.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Weiss, J. A.

J. A. Weiss, L. S. Goldberg, IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

Zigler, A.

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

H. Röhr, L. Kellerer, Appl. Phys. Lett. 24, 124 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. A. Weiss, L. S. Goldberg, IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

J. Phys. E (1)

S. Jackel, R. Laluz, B. Arad, S. Eliezer, Y. Gazit, Y. Paiss, H. Szichman, A. Zigler, J. Phys. E 15, 670 (1982);S. Jackel, R. Laluz, Y. Paiss, H. Szichman, B. Arad, S. Eliezer, Y. Gazit, H. M. Loebenstein, A. Zigler, J. Phys. E 15, 255 (1982).
[CrossRef]

Opt. Commun. (2)

C. H. Brito Cruz, E. Palange, F. De Martini, Opt. Commun. 39, 331 (1981).
[CrossRef]

P. Ewert, Opt. Commun. 28, 379 (1979).
[CrossRef]

Opt. Lett. (1)

Other (3)

B. Gellert, “Pulsschneidesystem zu einem TEA-CO2 Laser,” SFB report 76-N3-010, Sonderforschungsbereich Plasmaphysik Bochum/Jülich, Ruhruniversität, D-4630 Bochum, Germany (1976).

M. Pillsticker, “Effects of Optical Components on the Triggering of Spark Gaps by a Laser Beam,” IPP report 4/102, Garching bei München (Nov. 1972);H. Baumhacker, F. Hofmeister, K. Maischberger, K. H. Schmitter, “Investigation of Two Electrode Spark Gaps by the Focused Beam of a High Power Ruby Laser,” Fifth Symposium on Fusion Technology (1968).

C. Heupts, “Lichtstreuexperimente an einem dichten Z-Pinch,” Diplomarbeit, Ruhruniversität Bochum (1983), unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: M, totally reflecting mirror; R, ruby rod and flashlamp; PCP, crossed polarizer and Pockels cell configuration; F.P., Fabry-Perot configuration; BS, beam splitter; SG, laser-triggered spark gap; F, optical filters of variable density: 3 nsec ≦ τ1 ≦ 10 nsec; 0.8 nsec ≦ τ2 ≦ 5 nsec; τ3 ≦ 80 nsec.

Fig. 2
Fig. 2

Different pulse lengths (full width half-power) emitted from the ruby laser. Combined rise-times of detecting system, cable and oscilloscope are 3.2 nsec in (a), 0.9 nsec in (b) and (c), and <320 psec in (d). (b) shows single longitudinal mode operation when the PCP setup is tilted to a = ±1.25°. (c) shows the lengthened pulse when 6 nF are connected in parallel to the spark gap electrodes. The temporal modulation is due to multimode operation. (c) shows a short pulse of 800-psec duration.

Fig. 3
Fig. 3

Relative output power as a function of twist angle α. Only beyond α = 0.5° does fine adjustment of the cavity seem necessary.

Fig. 4
Fig. 4

Pulse length as a function of parallel switching capacity. For these measurements L2 = 20.5 cm was chosen.

Metrics