Abstract

An assessment is made of the role the various error sources play in limiting the accuracy of infrared differential absorption lidar measurements used for the remote sensing of atmospheric species. An overview is presented of the relative contribution of each error source including the inadequate knowledge of the absorption coefficient, differential spectral reflectance, and background interference as well as measurement errors arising from signal fluctuations.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  2. E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978).
    [CrossRef] [PubMed]
  3. K. W. Rothe, Radio Electron. Eng. 50, 567 (1980).
    [CrossRef]
  4. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  5. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981).
    [CrossRef] [PubMed]
  6. K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  7. V. M. Artemov et al., Meteorol. Gidrol. 7, 103 (1977)[Sov. Meteorol. Hydrol. 7, (1977)].
  8. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, Appl. Opt. 13, 2850 (1974).
    [CrossRef] [PubMed]
  9. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, Appl. Opt. 17, 391 (1978).
    [CrossRef] [PubMed]
  10. J. Boscher, “Entwicklung eines flugzeuggetragenen Messsystems zur Erkundung der Erdoberflache und Atmosphare: Analytische Untersuchungen,” BFMT Contract 01 TL 026-AK/RT/WRT 2074 (1978).
  11. R. J. Brewer, C. W. Bruce, Appl. Opt. 17, 3746 (1978).
    [CrossRef] [PubMed]
  12. J. Shewchun et al., Appl. Opt. 15, 340 (1976).
    [CrossRef] [PubMed]
  13. R. J. Brewer, C. W. Bruce, J. L. Mater, Appl. Opt. 21, 4092 (1982).
    [CrossRef] [PubMed]
  14. P. L. Kelley, R. A. McClatchey, R. K. Long, A. Snelson, Opt. Quantum Electron. 8, 117 (1976).
    [CrossRef]
  15. G. H. Swits, in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 3.
  16. V. Leeman, D. Earing, R. K. Vincent, S. Ladd, “The NASA Earth Resource Spectral Information System: A Data Compilation,” NASA CR-31650-14-T (1971).
  17. J. Boscher, W. Englisch, W. Wiesemann, in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC2-1.
  18. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, Appl. Opt. 21, 2386 (1982).
    [CrossRef] [PubMed]
  19. W. B. Grant, Appl. Opt. 21, 2390 (1982).
    [CrossRef] [PubMed]
  20. J. L. Bufton, T. Itabe, D. A. Grolemund, Opt. Lett. 7, 584 (1982).
    [CrossRef] [PubMed]
  21. W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978).
    [CrossRef]
  22. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981).
    [CrossRef] [PubMed]
  23. W. B. Grant, “Measurement of Ozone Transport from the Los Angeles Basin Using the Airborne Laser Absorption Spectrometer and a Dasibi Ozone Monitor,” Final Report 5030-512, Jet Propulsion Laboratory (1981).
  24. Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif.Feb. 1982), papers A-1, B-2, B-3, B-4.
  25. J. C. Petheram, Appl. Opt. 20, 3941 (1981).
    [CrossRef] [PubMed]
  26. E. R. Murray, Opt. Eng. 17, 30 (1978).
  27. D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
    [CrossRef]
  28. R. A. McClatchey, A. P. D'Agati, “Atmospheric Transmision of Laser Radiation: Computer Code Laser,” Environmental Research Paper 622, AFGL-TR-78-0029 (1978), and references contained therein.
  29. M. E. Thomas, R. J. Nordstrom, J. Quant. Spectrosc. Radiat. Transfer, 28, 81, 103 (1982).
    [CrossRef]
  30. R. T. Menzies, M. S. Shumate, Appl. Opt. 15, 2080 (1976).
    [CrossRef] [PubMed]
  31. N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
    [CrossRef] [PubMed]
  32. N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1980).
    [CrossRef]
  33. N. Menyuk, D. K. Killinger, C. R. Menyuk, in Optical and Laser Remote Sensing, A. Mooradian, D. K. Killinger, Eds. (Springer, Berlin, 1983).
  34. D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Opt. 22, 682 (1983).
    [CrossRef] [PubMed]
  35. P. A. Pincus, M. E. Fossey, J. F. Holmes, J. R. Kerr, J. Opt. Soc. Am. 68, 760 (1978).
    [CrossRef]
  36. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
    [CrossRef] [PubMed]
  37. N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
    [CrossRef] [PubMed]
  38. J. H. Shapiro, “Target Detection with a Direct-Reception Optical Radar,” Project Report TST-27, Lincoln Laboratory, MIT (1978).
  39. J. H. Shapiro, B. A. Capron, R. C. Harney, Appl. Opt. 20, 3292 (1981).
    [CrossRef] [PubMed]
  40. J. Bures, J. Opt. Soc. Am. 64, 1598 (1974).
    [CrossRef]
  41. E. Jakeman, C. J. Oliver, E. R. Pike, Adv. Phys. 24, 349 (1975).
    [CrossRef]
  42. M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
    [CrossRef]
  43. N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
    [CrossRef] [PubMed]
  44. A. G. Kjelaas, P. E. Nordal, A. Bjerkestrand, Appl. Opt. 17, 277 (1978).
    [CrossRef] [PubMed]
  45. B. Marthinsson, J. Johnasson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
    [CrossRef]
  46. D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
    [CrossRef]
  47. For a given target roughness the cross correlation is a function of the difference in the propagation vectors of the two laser beams which can arise from differences in the frequencies or angles of incidence of the beams.See J. W. Goodman, G. Parry, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chaps. 2 and 3, respectively.
  48. N. Menyuk, D. K. Killinger, C. R. Menyuk, to be submitted.
  49. J. W. Goodman, Proc. IEEE 53, 1688 (1965).
    [CrossRef]
  50. G. Megie, R. T. Menzies, Appl. Opt. 19, 1173 (1980).
    [CrossRef] [PubMed]
  51. P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).
  52. R. M. Hardesty, “A Comparison of Heterodyne and Direction Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL WPL-64 (1980).
  53. C. S. Gardner, A. M. Saleh, “Speckle Noise in Differential Absorption LIDAR Systems,” U. Illinois Radio Research Report496 (1978).
  54. D. L. Spears, “IR Detectors: Heterodyne and Direct,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper H5.
  55. A. B. Gschwendtner, R. C. Harney, R. J. Hull, “Coherent IR Radar Technology,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper J1.
  56. R. C. Harney, “Laser PRF Considerations in Coherent DIAL Applications,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere, Incline Village, Nev., Jan. 1983, (Optical Society of America, Washington, D.C., 1983) paper TuC15.

1983 (1)

1982 (7)

1981 (7)

1980 (7)

K. W. Rothe, Radio Electron. Eng. 50, 567 (1980).
[CrossRef]

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1980).
[CrossRef]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

G. Megie, R. T. Menzies, Appl. Opt. 19, 1173 (1980).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

B. Marthinsson, J. Johnasson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

1979 (1)

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

1978 (8)

1977 (1)

V. M. Artemov et al., Meteorol. Gidrol. 7, 103 (1977)[Sov. Meteorol. Hydrol. 7, (1977)].

1976 (3)

1975 (1)

E. Jakeman, C. J. Oliver, E. R. Pike, Adv. Phys. 24, 349 (1975).
[CrossRef]

1974 (3)

1965 (1)

J. W. Goodman, Proc. IEEE 53, 1688 (1965).
[CrossRef]

Artemov, V. M.

V. M. Artemov et al., Meteorol. Gidrol. 7, 103 (1977)[Sov. Meteorol. Hydrol. 7, (1977)].

Asai, K.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Bair, C. H.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).

Beck, R.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978).
[CrossRef]

Bjerkestrand, A.

Boscher, J.

J. Boscher, “Entwicklung eines flugzeuggetragenen Messsystems zur Erkundung der Erdoberflache und Atmosphare: Analytische Untersuchungen,” BFMT Contract 01 TL 026-AK/RT/WRT 2074 (1978).

J. Boscher, W. Englisch, W. Wiesemann, in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC2-1.

Brewer, R. J.

Brockman, P.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).

Bruce, C. W.

Bufton, J. L.

Bures, J.

Capron, B. A.

Charpentier, H.

Comera, J.

D'Agati, A. P.

R. A. McClatchey, A. P. D'Agati, “Atmospheric Transmision of Laser Radiation: Computer Code Laser,” Environmental Research Paper 622, AFGL-TR-78-0029 (1978), and references contained therein.

DeFeo, W. E.

Earing, D.

V. Leeman, D. Earing, R. K. Vincent, S. Ladd, “The NASA Earth Resource Spectral Information System: A Data Compilation,” NASA CR-31650-14-T (1971).

Elbaum, M.

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

Eng, S. T.

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, Appl. Opt. 21, 2386 (1982).
[CrossRef] [PubMed]

B. Marthinsson, J. Johnasson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

Englisch, W.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978).
[CrossRef]

J. Boscher, W. Englisch, W. Wiesemann, in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC2-1.

Fossey, M. E.

Gardner, C. S.

C. S. Gardner, A. M. Saleh, “Speckle Noise in Differential Absorption LIDAR Systems,” U. Illinois Radio Research Report496 (1978).

Goodman, J. W.

J. W. Goodman, Proc. IEEE 53, 1688 (1965).
[CrossRef]

For a given target roughness the cross correlation is a function of the difference in the propagation vectors of the two laser beams which can arise from differences in the frequencies or angles of incidence of the beams.See J. W. Goodman, G. Parry, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chaps. 2 and 3, respectively.

Grant, W. B.

W. B. Grant, Appl. Opt. 21, 2390 (1982).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981).
[CrossRef] [PubMed]

W. B. Grant, “Measurement of Ozone Transport from the Los Angeles Basin Using the Airborne Laser Absorption Spectrometer and a Dasibi Ozone Monitor,” Final Report 5030-512, Jet Propulsion Laboratory (1981).

Grolemund, D. A.

Gschwendtner, A. B.

A. B. Gschwendtner, R. C. Harney, R. J. Hull, “Coherent IR Radar Technology,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper J1.

Gurs, K.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978).
[CrossRef]

Hardesty, R. M.

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

R. M. Hardesty, “A Comparison of Heterodyne and Direction Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL WPL-64 (1980).

Harney, R. C.

J. H. Shapiro, B. A. Capron, R. C. Harney, Appl. Opt. 20, 3292 (1981).
[CrossRef] [PubMed]

R. C. Harney, “Laser PRF Considerations in Coherent DIAL Applications,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere, Incline Village, Nev., Jan. 1983, (Optical Society of America, Washington, D.C., 1983) paper TuC15.

A. B. Gschwendtner, R. C. Harney, R. J. Hull, “Coherent IR Radar Technology,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper J1.

Hess, R. V.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).

Holmes, J. F.

Hull, R. J.

A. B. Gschwendtner, R. C. Harney, R. J. Hull, “Coherent IR Radar Technology,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper J1.

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Itabe, T.

J. L. Bufton, T. Itabe, D. A. Grolemund, Opt. Lett. 7, 584 (1982).
[CrossRef] [PubMed]

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jakeman, E.

E. Jakeman, C. J. Oliver, E. R. Pike, Adv. Phys. 24, 349 (1975).
[CrossRef]

Jaussaud, C.

Johnasson, J.

B. Marthinsson, J. Johnasson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

Keeler, R. J.

Kelley, P. L.

P. L. Kelley, R. A. McClatchey, R. K. Long, A. Snelson, Opt. Quantum Electron. 8, 117 (1976).
[CrossRef]

Kerr, J. R.

Killinger, D. K.

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Opt. 22, 682 (1983).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, C. R. Menyuk, in Optical and Laser Remote Sensing, A. Mooradian, D. K. Killinger, Eds. (Springer, Berlin, 1983).

N. Menyuk, D. K. Killinger, C. R. Menyuk, to be submitted.

Kjelaas, A. G.

Ladd, S.

V. Leeman, D. Earing, R. K. Vincent, S. Ladd, “The NASA Earth Resource Spectral Information System: A Data Compilation,” NASA CR-31650-14-T (1971).

Leeman, V.

V. Leeman, D. Earing, R. K. Vincent, S. Ladd, “The NASA Earth Resource Spectral Information System: A Data Compilation,” NASA CR-31650-14-T (1971).

Long, R. K.

P. L. Kelley, R. A. McClatchey, R. K. Long, A. Snelson, Opt. Quantum Electron. 8, 117 (1976).
[CrossRef]

Lundqvist, S.

Marthinsson, B.

B. Marthinsson, J. Johnasson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

Mater, J. L.

Mayer, A.

McClatchey, R. A.

P. L. Kelley, R. A. McClatchey, R. K. Long, A. Snelson, Opt. Quantum Electron. 8, 117 (1976).
[CrossRef]

R. A. McClatchey, A. P. D'Agati, “Atmospheric Transmision of Laser Radiation: Computer Code Laser,” Environmental Research Paper 622, AFGL-TR-78-0029 (1978), and references contained therein.

McClenny, W. A.

McDougal, D. S.

Megie, G.

Menyuk, C. R.

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, in Optical and Laser Remote Sensing, A. Mooradian, D. K. Killinger, Eds. (Springer, Berlin, 1983).

N. Menyuk, D. K. Killinger, C. R. Menyuk, to be submitted.

Menyuk, N.

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Opt. 22, 682 (1983).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, C. R. Menyuk, in Optical and Laser Remote Sensing, A. Mooradian, D. K. Killinger, Eds. (Springer, Berlin, 1983).

N. Menyuk, D. K. Killinger, C. R. Menyuk, to be submitted.

Menzies, R. T.

Morgan, D. R.

Murray, E. R.

Nordal, P. E.

Nordstrom, R. J.

M. E. Thomas, R. J. Nordstrom, J. Quant. Spectrosc. Radiat. Transfer, 28, 81, 103 (1982).
[CrossRef]

Oliver, C. J.

E. Jakeman, C. J. Oliver, E. R. Pike, Adv. Phys. 24, 349 (1975).
[CrossRef]

Parry, G.

For a given target roughness the cross correlation is a function of the difference in the propagation vectors of the two laser beams which can arise from differences in the frequencies or angles of incidence of the beams.See J. W. Goodman, G. Parry, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chaps. 2 and 3, respectively.

Patty, R. R.

Persson, U.

Petheram, J. C.

Pike, E. R.

E. Jakeman, C. J. Oliver, E. R. Pike, Adv. Phys. 24, 349 (1975).
[CrossRef]

Pincus, P. A.

Post, M. J.

Richter, R. A.

Rothe, K. W.

K. W. Rothe, Radio Electron. Eng. 50, 567 (1980).
[CrossRef]

Russwurm, G. M.

Saleh, A. M.

C. S. Gardner, A. M. Saleh, “Speckle Noise in Differential Absorption LIDAR Systems,” U. Illinois Radio Research Report496 (1978).

Schotland, R. M.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Shapiro, J. H.

J. H. Shapiro, B. A. Capron, R. C. Harney, Appl. Opt. 20, 3292 (1981).
[CrossRef] [PubMed]

J. H. Shapiro, “Target Detection with a Direct-Reception Optical Radar,” Project Report TST-27, Lincoln Laboratory, MIT (1978).

Shewchun, J.

Shumate, M. S.

Snelson, A.

P. L. Kelley, R. A. McClatchey, R. K. Long, A. Snelson, Opt. Quantum Electron. 8, 117 (1976).
[CrossRef]

Spears, D. L.

D. L. Spears, “IR Detectors: Heterodyne and Direct,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper H5.

Staton, L. D.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).

Swits, G. H.

G. H. Swits, in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 3.

Teich, M. C.

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

Thomas, M. E.

M. E. Thomas, R. J. Nordstrom, J. Quant. Spectrosc. Radiat. Transfer, 28, 81, 103 (1982).
[CrossRef]

van der Laan, J. E.

Vincent, R. K.

V. Leeman, D. Earing, R. K. Vincent, S. Ladd, “The NASA Earth Resource Spectral Information System: A Data Compilation,” NASA CR-31650-14-T (1971).

Wiesemann, W.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978).
[CrossRef]

J. Boscher, W. Englisch, W. Wiesemann, in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC2-1.

Adv. Phys. (1)

E. Jakeman, C. J. Oliver, E. R. Pike, Adv. Phys. 24, 349 (1975).
[CrossRef]

Appl. Opt. (20)

R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, Appl. Opt. 13, 2850 (1974).
[CrossRef] [PubMed]

J. Shewchun et al., Appl. Opt. 15, 340 (1976).
[CrossRef] [PubMed]

R. T. Menzies, M. S. Shumate, Appl. Opt. 15, 2080 (1976).
[CrossRef] [PubMed]

A. G. Kjelaas, P. E. Nordal, A. Bjerkestrand, Appl. Opt. 17, 277 (1978).
[CrossRef] [PubMed]

A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, Appl. Opt. 17, 391 (1978).
[CrossRef] [PubMed]

E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978).
[CrossRef] [PubMed]

R. J. Brewer, C. W. Bruce, Appl. Opt. 17, 3746 (1978).
[CrossRef] [PubMed]

G. Megie, R. T. Menzies, Appl. Opt. 19, 1173 (1980).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981).
[CrossRef] [PubMed]

J. H. Shapiro, B. A. Capron, R. C. Harney, Appl. Opt. 20, 3292 (1981).
[CrossRef] [PubMed]

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

J. C. Petheram, Appl. Opt. 20, 3941 (1981).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
[CrossRef] [PubMed]

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, Appl. Opt. 21, 2386 (1982).
[CrossRef] [PubMed]

W. B. Grant, Appl. Opt. 21, 2390 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

R. J. Brewer, C. W. Bruce, J. L. Mater, Appl. Opt. 21, 4092 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Opt. 22, 682 (1983).
[CrossRef] [PubMed]

Appl. Phys. (1)

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978).
[CrossRef]

Appl. Phys. Lett. (3)

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Quant. Spectrosc. Radiat. Transfer (1)

M. E. Thomas, R. J. Nordstrom, J. Quant. Spectrosc. Radiat. Transfer, 28, 81, 103 (1982).
[CrossRef]

Meteorol. Gidrol. (1)

V. M. Artemov et al., Meteorol. Gidrol. 7, 103 (1977)[Sov. Meteorol. Hydrol. 7, (1977)].

NASA Tech. (1)

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise: Aircraft/ Shuttle Measurements of O3, H2O, and NH3 with Pulsed Tunable CO2 Lasers,” NASA Tech. Paper 1725 (1980).

Opt. Commun. (1)

M. Elbaum, M. C. Teich, Opt. Commun. 27, 257 (1978).
[CrossRef]

Opt. Eng. (1)

E. R. Murray, Opt. Eng. 17, 30 (1978).

Opt. Lett. (2)

Opt. Quantum Electron. (2)

B. Marthinsson, J. Johnasson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

P. L. Kelley, R. A. McClatchey, R. K. Long, A. Snelson, Opt. Quantum Electron. 8, 117 (1976).
[CrossRef]

Proc. IEEE (1)

J. W. Goodman, Proc. IEEE 53, 1688 (1965).
[CrossRef]

Radio Electron. Eng. (1)

K. W. Rothe, Radio Electron. Eng. 50, 567 (1980).
[CrossRef]

Other (16)

J. Boscher, “Entwicklung eines flugzeuggetragenen Messsystems zur Erkundung der Erdoberflache und Atmosphare: Analytische Untersuchungen,” BFMT Contract 01 TL 026-AK/RT/WRT 2074 (1978).

G. H. Swits, in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 3.

V. Leeman, D. Earing, R. K. Vincent, S. Ladd, “The NASA Earth Resource Spectral Information System: A Data Compilation,” NASA CR-31650-14-T (1971).

J. Boscher, W. Englisch, W. Wiesemann, in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper ThC2-1.

W. B. Grant, “Measurement of Ozone Transport from the Los Angeles Basin Using the Airborne Laser Absorption Spectrometer and a Dasibi Ozone Monitor,” Final Report 5030-512, Jet Propulsion Laboratory (1981).

Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif.Feb. 1982), papers A-1, B-2, B-3, B-4.

N. Menyuk, D. K. Killinger, C. R. Menyuk, in Optical and Laser Remote Sensing, A. Mooradian, D. K. Killinger, Eds. (Springer, Berlin, 1983).

J. H. Shapiro, “Target Detection with a Direct-Reception Optical Radar,” Project Report TST-27, Lincoln Laboratory, MIT (1978).

R. A. McClatchey, A. P. D'Agati, “Atmospheric Transmision of Laser Radiation: Computer Code Laser,” Environmental Research Paper 622, AFGL-TR-78-0029 (1978), and references contained therein.

For a given target roughness the cross correlation is a function of the difference in the propagation vectors of the two laser beams which can arise from differences in the frequencies or angles of incidence of the beams.See J. W. Goodman, G. Parry, in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chaps. 2 and 3, respectively.

N. Menyuk, D. K. Killinger, C. R. Menyuk, to be submitted.

R. M. Hardesty, “A Comparison of Heterodyne and Direction Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL WPL-64 (1980).

C. S. Gardner, A. M. Saleh, “Speckle Noise in Differential Absorption LIDAR Systems,” U. Illinois Radio Research Report496 (1978).

D. L. Spears, “IR Detectors: Heterodyne and Direct,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper H5.

A. B. Gschwendtner, R. C. Harney, R. J. Hull, “Coherent IR Radar Technology,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 1982, paper J1.

R. C. Harney, “Laser PRF Considerations in Coherent DIAL Applications,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere, Incline Village, Nev., Jan. 1983, (Optical Society of America, Washington, D.C., 1983) paper TuC15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Display of successive returns from a diffusely reflecting target and a retroreflector, both at a range of 2.7 km, using direct and heterodyne detection. The prf of the pulsed CO2 lasers was 10 Hz.

Fig. 2
Fig. 2

(a) Standard deviation of the mean of lidar returns from a retroreflector at a range of 2.7 km as a function of the number of signals averaged: (b) Temporal autocorrelation coefficient of the same lidar returns as a function of the temporal separation between lidar returns; prf = 10 Hz.

Fig. 3
Fig. 3

Temporal history of lidar returns from dual CO2 laser system showing strong cross correlation. The returns were backscattered from a retroreflector at a range of 2.7 km, with a time separation of 10 μsec between corresponding pulses of lasers 1 and 2; prf = 10 Hz.

Fig. 4
Fig. 4

Standard deviation of the mean of lidar returns backscattered from a diffusely reflecting target using a dual CO2 laser system, with both lasers operating on the same CO2 laser transition. Values of the standard deviation for the individual lasers and for their ratios are given. The differences between the ratio curves (L1/L2) are discussed in the text; prf = 10 Hz.

Tables (3)

Tables Icon

Table I Measured Absorption Coefficient Values

Tables Icon

Table II Calculated Errors for DIAL Measurements Using Topographic Targetsa

Tables Icon

Table III Typical Values of ρc, σ, and σnx/ny After Averaging Over 512 Pulses (prf = 10 Hz, Range = 2.7 km)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P r = ( P t K ρ A / π R 2 ) exp [ 2 ( σ a N a + α ) R ]
N a = 1 2 ( σ a σ a ) R [ ln ( P a P a ) + ln ( ρ ρ ) + 2 ( α α ) R ] ,
N a = ln ( P a / P a ) 2 ( σ a σ a ) R ,
σ a σ a = ln ( P c / P c ) N c L ,
d dR [ ln ( P a / P a ) ] = 2 ( α α ) + 2 N a ln ( P c / P c ) N c L ,
σ n = σ n [ 1 + 2 j = 1 n 1 ( 1 j / n ) ρ j ] 1 / 2 ,
ρ c = σ x y σ x σ y = ( x i x ̅ ) ( y i y ̅ ) [ ( x i x ̅ ) 2 ( y i y ̅ ) 2 ] 1 / 2 ,
( σ x / y ) 2 = σ x 2 + σ y 2 2 ρ c σ x σ y .
[ σ ( n x ) / ( n y ) ] 2 = σ n x 2 + σ n y 2 2 ρ n c σ n x σ n y ,

Metrics