Abstract

Wavelength and angular dependence of reflectances and depolarization in the 9–11-μm region are reported for four standard targets: flowers of sulfur, flame-sprayed aluminum, 20-grit sandblasted aluminum, and 400-grit silicon carbide sandpaper. Measurements are presented and compared using a cw CO2 grating-tunable laser in a laboratory backscatter apparatus, an integrating sphere, and a coherent pulsed TEA-CO2 lidar system operating in the 9–11-μm region. Reflectance theory related to the use of hard targets to calibrate lidar atmospheric backscatter data is discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo. ERL WPL-37 (Sept.1978).
  2. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).
  3. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).
  4. F. E. Nicodemus, Ed., “Self-Study Manual on Optical Radiation Measurements: Part I—Concepts,” NBS Tech. Note 910-1 (Mar.1976), Chaps. 1–3.
  5. J. T. Agnew, R. B. McQuistan, J. Opt. Soc. Am. 43, 999 (1953).
    [CrossRef]
  6. W. WM. Wendlandt, H. G. Hecht, “Reflectance Spectroscopy,” Chemical Analysis; A Series of Monographs on Analytical Chemistry and its Applications, Vol. 21, P. J. Elving, I. M. Kolthoff, Eds. (Interscience, New York, 1966).
  7. T. S. Trowbridge, J. Opt. Soc. Am. 68, 1225 (1978).
    [CrossRef]
  8. K. Sassen, G. C. Dodd, Appl. Opt. 21, 3162 (1982).
    [CrossRef] [PubMed]
  9. R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
    [CrossRef]
  10. R. T. H. Collis, P. B. Russell, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, Berlin, 1976), Chap. 4.
  11. M. Kronstein, R. J. Kraushaar, R. C. Deacle, J. Opt. Soc. Am. 53, 458 (1963).
    [CrossRef]
  12. M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
    [CrossRef] [PubMed]
  13. Sandblast 6061 aluminum plate with 60-grit sand. Prime with Ni alumina bonding agent. Flame-spray with pure aluminum to a thickness of 0.25–0.38 mm.
  14. R. A. Brandewie, W. C. Davis, Appl. Opt. 11, 1526 (1972).
    [CrossRef] [PubMed]
  15. O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).
  16. G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).
  17. W. G. Spitzer, D. Kleinman, D. Walsh, Phys. Rev. 113, 127 (1959).
    [CrossRef]
  18. W. R. Blevin, W. J. Brown, J. Sci. Instrum. 42, 385 (1965).
    [CrossRef]
  19. P. H. Flamant, R. T. Menzies, IEEE J. Quantum Electron. QE-19, 821 (1983).
    [CrossRef]
  20. M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, IEEE J. Quantum Electron. QE-18, 19 (1982).
    [CrossRef]
  21. M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron.QE-19, 000 (1983); to be published.

1983 (1)

P. H. Flamant, R. T. Menzies, IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

1982 (2)

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

K. Sassen, G. C. Dodd, Appl. Opt. 21, 3162 (1982).
[CrossRef] [PubMed]

1981 (1)

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

1980 (1)

1978 (1)

1977 (1)

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

1976 (1)

F. E. Nicodemus, Ed., “Self-Study Manual on Optical Radiation Measurements: Part I—Concepts,” NBS Tech. Note 910-1 (Mar.1976), Chaps. 1–3.

1975 (1)

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

1972 (1)

1965 (1)

W. R. Blevin, W. J. Brown, J. Sci. Instrum. 42, 385 (1965).
[CrossRef]

1963 (1)

1959 (1)

W. G. Spitzer, D. Kleinman, D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

1953 (1)

Agnew, J. T.

Blevin, W. R.

W. R. Blevin, W. J. Brown, J. Sci. Instrum. 42, 385 (1965).
[CrossRef]

Bolander, G.

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).

Brandewie, R. A.

Brown, W. J.

W. R. Blevin, W. J. Brown, J. Sci. Instrum. 42, 385 (1965).
[CrossRef]

Byer, R. L.

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, Berlin, 1976), Chap. 4.

Davis, W. C.

Deacle, R. C.

Dodd, G. C.

Flamant, P. H.

P. H. Flamant, R. T. Menzies, IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

Ginsburg, I. W.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

Gullberg, K.

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).

Hall, F. F.

Hardesty, R. M.

Hecht, H. G.

W. WM. Wendlandt, H. G. Hecht, “Reflectance Spectroscopy,” Chemical Analysis; A Series of Monographs on Analytical Chemistry and its Applications, Vol. 21, P. J. Elving, I. M. Kolthoff, Eds. (Interscience, New York, 1966).

Hsia, J. J.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

Huffaker, R. M.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

Kavaya, M. J.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron.QE-19, 000 (1983); to be published.

Keeler, R. J.

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

Kleinman, D.

W. G. Spitzer, D. Kleinman, D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Korrell, J. A.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

Kraushaar, R. J.

Kronstein, M.

Lawrence, T. R.

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

Limperis, T.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

McQuistan, R. B.

Menzies, R. T.

P. H. Flamant, R. T. Menzies, IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron.QE-19, 000 (1983); to be published.

Nicodemus, F. E.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

Oppenheim, U. P.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron.QE-19, 000 (1983); to be published.

Post, M. J.

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

Priestly, J. T.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

Renhorn, I.

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).

Richmond, J. C.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

Richter, R. A.

Russell, P. B.

R. T. H. Collis, P. B. Russell, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, Berlin, 1976), Chap. 4.

Sassen, K.

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Steinvall, O.

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).

Trowbridge, T. S.

Walsh, D.

W. G. Spitzer, D. Kleinman, D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Wendlandt, W. WM.

W. WM. Wendlandt, H. G. Hecht, “Reflectance Spectroscopy,” Chemical Analysis; A Series of Monographs on Analytical Chemistry and its Applications, Vol. 21, P. J. Elving, I. M. Kolthoff, Eds. (Interscience, New York, 1966).

Widen, A.

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).

Appl. Opt. (3)

IEEE J. Quantum Electron. (2)

P. H. Flamant, R. T. Menzies, IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Sci. Instrum. (1)

W. R. Blevin, W. J. Brown, J. Sci. Instrum. 42, 385 (1965).
[CrossRef]

NBS Monograph (1)

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, T. Limperis, “Geometrical Considerations and Nomenclature for Reflectance,” NBS Monograph160 (Oct.1977).

NBS Tech. Note 910-1 (1)

F. E. Nicodemus, Ed., “Self-Study Manual on Optical Radiation Measurements: Part I—Concepts,” NBS Tech. Note 910-1 (Mar.1976), Chaps. 1–3.

Opt. Quantum Electron. (1)

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

O. Steinvall, G. Bolander, K. Gullberg, I. Renhorn, A. Widen, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 100 (1981).

Other (7)

G. Bolander, K. Gullberg, I. Renhorn, O. Steinvall, A. Widen, “Studies of Target Signatures with a Coherent Laser Radar,” FOA Report C 30220-El, Linkoping, Sweden (May1981).

Sandblast 6061 aluminum plate with 60-grit sand. Prime with Ni alumina bonding agent. Flame-spray with pure aluminum to a thickness of 0.25–0.38 mm.

R. T. H. Collis, P. B. Russell, Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, Berlin, 1976), Chap. 4.

W. WM. Wendlandt, H. G. Hecht, “Reflectance Spectroscopy,” Chemical Analysis; A Series of Monographs on Analytical Chemistry and its Applications, Vol. 21, P. J. Elving, I. M. Kolthoff, Eds. (Interscience, New York, 1966).

R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo. ERL WPL-37 (Sept.1978).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (Aug.1980).

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Spectrophone Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron.QE-19, 000 (1983); to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Pictorial representation of three possible reflectance geometries: (a) the illuminating spot is smaller than the target and the detector field of view at the target, (b) the target area viewed by the detector is smallest, and (c) the target is smallest.

Fig. 2
Fig. 2

Integrating sphere measurements of ρIS for flame-sprayed aluminum, sublimed flowers of sulfur, 20-grit sandblasted aluminum, an 400-grit silicon carbide sandpaper.

Fig. 3
Fig. 3

Laboratory collinear backscatter apparatus.

Fig. 4
Fig. 4

Plot of angular dependence of backscatter for sublimed flowers of sulfur at 10.6 μm. The illuminating radiation is polarized perpendicular to the plane of incidence at the target. Upper plot: detected polarization parallel to illumination (s,s). Lower plot: perpendicular (s,p). The solid line is a least-squares best fit to a cosine curve, and the dashed line is the percent deviation of the cosine curve from the experimental data. Six data at each angle are averaged, and ±1σ is indicated.

Fig. 5
Fig. 5

Same as Fig. 4 but for flame-sprayed aluminum.

Fig. 6
Fig. 6

Same as Fig. 4 but for 20-grit sandblasted aluminum.

Fig. 7
Fig. 7

Same as Fig. 4 but for 400-grit silicon carbide sandpaper.

Fig. 8
Fig. 8

Same as Fig. 4 but at 9.6 μm.

Fig. 9
Fig. 9

Same as Fig. 4 but for flame-sprayed aluminum at 9.6 μm.

Fig. 10
Fig. 10

Same as Fig. 4 but for 20-grit sandblasted aluminum at 9.6 μm.

Fig. 11
Fig. 11

Same as Fig. 4 but for 400-grit silicon carbide sandpaper at 9.6 μm.

Fig. 12
Fig. 12

Optical layout of the JPL coherent lidar system.

Tables (2)

Tables Icon

Table I Ratios of Reflectance Data for Different Targets

Tables Icon

Table II Ratios of θ = 45° Backscatter Reflectance Data to θ = 10° Data

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

f r ( θ i , ϕ i ; θ r , ϕ r ) d L r ( θ i , ϕ i ; θ r , ϕ r ; E i ) d E i ( θ i , ϕ i ) .
L ( θ , ϕ ) d 2 Φ d A cos θ d ω ,
ρ ( ω i ; ω r ) = ω r ω i f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ i cos θ r d ω i d ω r ω i cos θ i d ω i ,
ρ ( θ i , ϕ i ; ω r ) = ω r f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ r d ω r ,
ρ I S = ρ ( θ i , ϕ i ; 2 π ) = 0 2 π 0 π / 2 f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ r × sin θ r d θ r d ϕ r ,
ρ ( θ i , ϕ i ; θ r , ϕ r ) = ω r f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ r ,
S ( θ r ) ω r f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ r ,
I = 0 π / 2 S ( θ ) sin θ d θ ω r 0 π / 2 f r ( θ , ϕ i ; θ , ϕ i ) cos θ sin θ d θ .
P r , s ( t ) = P t ( t 2 R s c ) ρ * A R s 2 η O ( R s ) × exp { 2 o R s α s ( r ) d r } ,
ρ * ( ω i ; ω r ) = ω r ω i f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ i cos θ r d ω i d ω r ω r ω i cos θ i d ω i .
ρ * ( θ i , ϕ i ; θ r , ϕ r ) = f r ( θ i , ϕ i ; θ r , ϕ r ) cos θ r ,
ρ * ( θ , ϕ ; θ , ϕ ) = f r ( θ , ϕ ; θ , ϕ ) cos θ .
P r , b ( t ) = c ( t τ ) / 2 c t / 2 P t ( t 2 R c ) β ( R ) A R 2 η O ( R ) exp [ 2 0 R α b ( r ) d r ] d R ,
P r , b ( t ) = β ( R b ) A R b 2 η O ( R b ) exp { 2 0 R b α b ( r ) d r } c ( t τ ) / 2 c t / 2 P t ( t 2 R c ) d R = β ( R b ) A R b 2 η O ( R b ) exp { 2 0 R b α b ( r ) d r } c 2 0 τ P t ( t ) d t .
I s = 2 R s / c 2 R s / c + τ P r , s ( t ) d t = ρ * A R s 2 η O ( R s ) exp [ 2 0 R s α s ( r ) d r ] × 0 τ P t ( t ) d t .
β ( R b ) = P r , b ( t ) I s ρ * R b 2 R s 2 O ( R s ) O ( R b ) exp [ 2 0 R s α s ( r ) d r ] exp [ 2 0 R b α b ( r ) d r ] 2 c .
β ( R s ) = P r , b ( t ) I s ρ * 2 c ,
o π / 2 S ( θ ) sin θ d θ 9 P ( 20 )
θ = 45 ° 9 P ( 20 )

Metrics