Abstract

A lidar instrument based on pulsed frequency-doubled carbon-dioxide lasers has been used at 4.88 μm for remote sensing of atmospheric carbon dioxide. A tunable-diode laser spectrometer provided the high-resolution spectroscopic data on carbon-dioxide line strength and line broadening needed for an accurate differential absorption measurement. Initial field measurements are presented, and instrument improvements necessary for accurate carbon dioxide measurement are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).
  2. E. R. Murray, D. D. Powell, J. E. van der Laan, Appl. Opt. 19, 1794 (1980).
    [CrossRef] [PubMed]
  3. C. L. Korb, C. Y. Weng, Appl. Meteorol. 21, 134 (1982).
    [CrossRef]
  4. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  5. R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
    [CrossRef]
  6. C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6–9 Oct. 1980, paper 105.
  7. L. S. Rothman et al., Appl. Opt. 22, 1616 (1983).
    [CrossRef] [PubMed]
  8. C. Freed, L. C. Bradley, R. G. O'Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
    [CrossRef]
  9. R. M. Measures, Appl. Opt. 16, 1092 (1977).
    [CrossRef] [PubMed]
  10. L. L. Strow, J. Mol. Spectrosc. 97, 9 (1983).
    [CrossRef]
  11. D. E. Jennings, Appl. Opt. 19, 2695 (1980).
    [CrossRef] [PubMed]
  12. R. Ladenburg, Z. Phys., 65, 200 (1930).
  13. The calculated width is the Voigt width at 0.309 Torr. If a self-broadening coefficient of 0.092 cm−1 atm−1 is used [see Ref. (15)], the Voigt width is 1% larger than the Doppler width. The observed widths averaged 1.5% larger than this calculated Voigt width.
  14. P. A. Jansson, C. L. Korb, J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
    [CrossRef]
  15. F. P. J. Valero, C. B. Suzrez, R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979).
    [CrossRef]
  16. J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).
    [CrossRef]
  17. P. Arcas, E. Arie, A. Valentin, A. Henry, J. Mol. Spectrosc. 96, 288 (1982).
    [CrossRef]
  18. R. S. Eng, A. W. Mantz, J. Mol. Spectrosc. 74, 331 (1979).
    [CrossRef]
  19. W. G. Planet, G. L. Tettemer, J. Quant. Spectrosc. Radiat. Transfer 22, 349 (1979).
    [CrossRef]
  20. J. L. Bufton, R. W. Stewart, “Measurement of Ozone Vertical Profiles in the Boundary Layer with a CO2 Differential Absorption Lidar,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6– Oct. 1980, paper 75.
  21. D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
    [CrossRef]
  22. N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
    [CrossRef] [PubMed]
  23. M. J. Kavaya, R. T. Menzies, P. H. Flamant, U. P. Oppenheim, “Target Reflectance Measurements for Calibration of Coherent Lidar Atmospheric Backscatter Data,” in Digest of Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC-14.
  24. N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
    [CrossRef] [PubMed]
  25. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  26. J. L. Bufton, T. Itabe, D. A. Grolemund, Opt. Lett. 7, 584 (1982).
    [CrossRef] [PubMed]
  27. O. R. Wood, Proc. IEEE 62, 355 (1974).
    [CrossRef]
  28. C. L. Korb, C. Y. Weng, “The Theory and Correction of Laser Finite Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Lidar Conference, Madison, Wisc., June 1982, paper 78.
  29. C. Cohen, G. Megie, J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
    [CrossRef]
  30. W. B. Grant, Appl. Opt. 21, 2390 (1982).
    [CrossRef] [PubMed]

1983 (2)

1982 (5)

1981 (2)

C. Cohen, G. Megie, J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

1980 (5)

1979 (3)

R. S. Eng, A. W. Mantz, J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

W. G. Planet, G. L. Tettemer, J. Quant. Spectrosc. Radiat. Transfer 22, 349 (1979).
[CrossRef]

F. P. J. Valero, C. B. Suzrez, R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979).
[CrossRef]

1977 (2)

J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).
[CrossRef]

R. M. Measures, Appl. Opt. 16, 1092 (1977).
[CrossRef] [PubMed]

1975 (1)

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

1974 (2)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

O. R. Wood, Proc. IEEE 62, 355 (1974).
[CrossRef]

1968 (1)

P. A. Jansson, C. L. Korb, J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

1930 (1)

R. Ladenburg, Z. Phys., 65, 200 (1930).

Arcas, P.

P. Arcas, E. Arie, A. Valentin, A. Henry, J. Mol. Spectrosc. 96, 288 (1982).
[CrossRef]

Arie, E.

P. Arcas, E. Arie, A. Valentin, A. Henry, J. Mol. Spectrosc. 96, 288 (1982).
[CrossRef]

Benner, D. C.

C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).

Boese, R. W.

F. P. J. Valero, C. B. Suzrez, R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979).
[CrossRef]

Bradley, L. C.

C. Freed, L. C. Bradley, R. G. O'Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

Bufton, J. L.

J. L. Bufton, T. Itabe, D. A. Grolemund, Opt. Lett. 7, 584 (1982).
[CrossRef] [PubMed]

J. L. Bufton, R. W. Stewart, “Measurement of Ozone Vertical Profiles in the Boundary Layer with a CO2 Differential Absorption Lidar,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6– Oct. 1980, paper 75.

C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6–9 Oct. 1980, paper 105.

Byer, R. L.

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Cohen, C.

C. Cohen, G. Megie, J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

DeFeo, W. E.

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

Eng, R. S.

R. S. Eng, A. W. Mantz, J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

Flamant, P. H.

M. J. Kavaya, R. T. Menzies, P. H. Flamant, U. P. Oppenheim, “Target Reflectance Measurements for Calibration of Coherent Lidar Atmospheric Backscatter Data,” in Digest of Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC-14.

Freed, C.

C. Freed, L. C. Bradley, R. G. O'Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

Grant, W. B.

Grolemund, D. A.

Henry, A.

P. Arcas, E. Arie, A. Valentin, A. Henry, J. Mol. Spectrosc. 96, 288 (1982).
[CrossRef]

Itabe, T.

Jansson, P. A.

P. A. Jansson, C. L. Korb, J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

Jennings, D. E.

Kaplan, L. D.

C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6–9 Oct. 1980, paper 105.

Kavaya, M. J.

M. J. Kavaya, R. T. Menzies, P. H. Flamant, U. P. Oppenheim, “Target Reflectance Measurements for Calibration of Coherent Lidar Atmospheric Backscatter Data,” in Digest of Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC-14.

Killinger, D. K.

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

Korb, C. L.

C. L. Korb, C. Y. Weng, Appl. Meteorol. 21, 134 (1982).
[CrossRef]

P. A. Jansson, C. L. Korb, J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6–9 Oct. 1980, paper 105.

C. L. Korb, C. Y. Weng, “The Theory and Correction of Laser Finite Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Lidar Conference, Madison, Wisc., June 1982, paper 78.

Ladenburg, R.

R. Ladenburg, Z. Phys., 65, 200 (1930).

Longbothum, R. L.

J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).
[CrossRef]

Mantz, A. W.

R. S. Eng, A. W. Mantz, J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

Measures, R. M.

Megie, G.

C. Cohen, G. Megie, J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

Menyuk, C. R.

Menyuk, N.

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

Menzies, R. T.

M. J. Kavaya, R. T. Menzies, P. H. Flamant, U. P. Oppenheim, “Target Reflectance Measurements for Calibration of Coherent Lidar Atmospheric Backscatter Data,” in Digest of Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC-14.

Murray, E. R.

O'Donnell, R. G.

C. Freed, L. C. Bradley, R. G. O'Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

Olivero, J. J.

J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).
[CrossRef]

Oppenheim, U. P.

M. J. Kavaya, R. T. Menzies, P. H. Flamant, U. P. Oppenheim, “Target Reflectance Measurements for Calibration of Coherent Lidar Atmospheric Backscatter Data,” in Digest of Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC-14.

Planet, W. G.

W. G. Planet, G. L. Tettemer, J. Quant. Spectrosc. Radiat. Transfer 22, 349 (1979).
[CrossRef]

Powell, D. D.

Rinsland, C. P.

C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).

Rothman, L. S.

Russell, J. M.

C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).

Schotland, R. M.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Seals, R. K.

C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).

Smith, M. A. H.

C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).

Stewart, R. W.

J. L. Bufton, R. W. Stewart, “Measurement of Ozone Vertical Profiles in the Boundary Layer with a CO2 Differential Absorption Lidar,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6– Oct. 1980, paper 75.

Strow, L. L.

L. L. Strow, J. Mol. Spectrosc. 97, 9 (1983).
[CrossRef]

Suzrez, C. B.

F. P. J. Valero, C. B. Suzrez, R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979).
[CrossRef]

Tettemer, G. L.

W. G. Planet, G. L. Tettemer, J. Quant. Spectrosc. Radiat. Transfer 22, 349 (1979).
[CrossRef]

Valentin, A.

P. Arcas, E. Arie, A. Valentin, A. Henry, J. Mol. Spectrosc. 96, 288 (1982).
[CrossRef]

Valero, F. P. J.

F. P. J. Valero, C. B. Suzrez, R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979).
[CrossRef]

van der Laan, J. E.

Weng, C. Y.

C. L. Korb, C. Y. Weng, Appl. Meteorol. 21, 134 (1982).
[CrossRef]

C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6–9 Oct. 1980, paper 105.

C. L. Korb, C. Y. Weng, “The Theory and Correction of Laser Finite Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Lidar Conference, Madison, Wisc., June 1982, paper 78.

Wood, O. R.

O. R. Wood, Proc. IEEE 62, 355 (1974).
[CrossRef]

Appl. Meteorol. (1)

C. L. Korb, C. Y. Weng, Appl. Meteorol. 21, 134 (1982).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

C. Freed, L. C. Bradley, R. G. O'Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

J. Mol. Spectrosc. (3)

L. L. Strow, J. Mol. Spectrosc. 97, 9 (1983).
[CrossRef]

P. Arcas, E. Arie, A. Valentin, A. Henry, J. Mol. Spectrosc. 96, 288 (1982).
[CrossRef]

R. S. Eng, A. W. Mantz, J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (5)

W. G. Planet, G. L. Tettemer, J. Quant. Spectrosc. Radiat. Transfer 22, 349 (1979).
[CrossRef]

P. A. Jansson, C. L. Korb, J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

F. P. J. Valero, C. B. Suzrez, R. W. Boese, J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979).
[CrossRef]

J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).
[CrossRef]

C. Cohen, G. Megie, J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Proc. IEEE (1)

O. R. Wood, Proc. IEEE 62, 355 (1974).
[CrossRef]

Z. Phys. (1)

R. Ladenburg, Z. Phys., 65, 200 (1930).

Other (6)

The calculated width is the Voigt width at 0.309 Torr. If a self-broadening coefficient of 0.092 cm−1 atm−1 is used [see Ref. (15)], the Voigt width is 1% larger than the Doppler width. The observed widths averaged 1.5% larger than this calculated Voigt width.

J. L. Bufton, R. W. Stewart, “Measurement of Ozone Vertical Profiles in the Boundary Layer with a CO2 Differential Absorption Lidar,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6– Oct. 1980, paper 75.

C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Lidar Conference, Silver Spring, Md., 6–9 Oct. 1980, paper 105.

C. P. Rinsland, D. C. Benner, M. A. H. Smith, R. K. Seals, J. M. Russell, NASA Langley Research Center; private communication (Jan.1983).

C. L. Korb, C. Y. Weng, “The Theory and Correction of Laser Finite Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Lidar Conference, Madison, Wisc., June 1982, paper 78.

M. J. Kavaya, R. T. Menzies, P. H. Flamant, U. P. Oppenheim, “Target Reflectance Measurements for Calibration of Coherent Lidar Atmospheric Backscatter Data,” in Digest of Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC-14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concept for differential absorption lidar measurement of CO2 near 4.8-μm wavelength.

Fig. 2
Fig. 2

Low-pressure (0.309 Torr) spectrum of the P(34) CO2 line near 4.88 μm averaged over 2500 tunable-diode laser scans for a White cell path of 20.26 m.

Fig. 3
Fig. 3

Nitrogen-broadened P(34) CO2 line shapes for a CO2/N2 mixing ratio of 1.8% and a White cell path of 44.2 m.

Fig. 4
Fig. 4

Nitrogen-broadened P(34) CO2 linewidth vs total pressure in cell.

Fig. 5
Fig. 5

Air-broadened P(34) CO2 linewidth vs total pressure in cell.

Fig. 6
Fig. 6

Frequency-doubled CO2 DIAL instrument.

Fig. 7
Fig. 7

Differential absorption ratio data for CO2 measurement at 4.88 μm. 9 Nov. 1982, 11:30 a.m. EDT.

Fig. 8
Fig. 8

Comparison of measured (●) and predicted standard deviation () of differential absorption ratio vs number (N) of lidar pulse pairs averaged. Predictions based on models of lidar data temporal correlation: (—) ρ = 0.10 − 0.025 Inj, (– – –) ρ = 0.05, and (— — —) ρ = exp(1.75 j); where j is the integer that represents the temporal lag value between ratio measurements.

Fig. 9
Fig. 9

Comparison of uncorrelated noise variance σ u 2 of the differential absorption ratio, before (●) and after (○) normalization by 4.8-μm output pulse energy vs inverse-squared DIAL signal strength E 2 = E x 2 + E y 2 .

Tables (4)

Tables Icon

Table I Absorption Coefficients for DIAL Measurements of CO2

Tables Icon

Table II Laboratory Test of CO2 Measurement Concept

Tables Icon

Table III Lidar Measurement of CO2 Over a 600-m Horizontal Path

Tables Icon

Table IV Estimates of Error Sources and Their Magnitudes in Frequency-Doubled CO2 DIAL Measurements

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E R λ = E T λ Z 2 A R ρ Ω L o λ exp [ 2 0 Z i α i ( η , λ ) M i ( η , λ ) d η ] ,
R = ( E R x / E T x ) ( E R y / E T y ) = exp [ 2 Z ( Δ α CO 2 M CO 2 + Δ α H 2 O M H 2 O ) ] ,
M CO 2 = ( ln R 2 Z + Δ α H 2 O M H 2 O ) / Δ α CO 2 .
W = [ 1 exp ( k ( ν ) X ) ] d ν ,
W = S X = n = 0 ( 1 ) n ( ln 2 / π ) n / 2 ( S X / γ D ) n ( n + 1 ) ! ( n + 1 ) 1 / 2 ,
γ L = γ V { 7.7254 6.7254 [ 1 + 0.3195 ( γ D / γ V ) ] 2 } ,
γ N 2 ° = 0.0732 ± 0.0009 ( cm atm ) 1 , γ AIR ° = 0.0700 ± 0.0010 ( cm atm ) 1 .
σ u 2 = σ x 2 E x 2 + σ y 2 E y 2 C x y .

Metrics