Abstract

Measurement theory and results from testing a breadboard multiwavelength (355-, 532- and 1064-nm) laser altimeter over horizontal paths are presented. They show that pressure accuracies of 3 mbar can be achieved when ranging at nadir to cube corner targets when using a 500-psec resolution waveform digitizer and utilizing new calibration techniques. Streak camera-based receivers will be required for the same or higher accuracies when ranging to the ocean surface. System design calculations for aircraft and spaceborne experiments are presented.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “The First GARP Global Experiment,” GARP Publication Series 11, World Meteorological Organization (Mar.1973).
  2. S. F. Singer, Appl. Opt. 7, 1125 (1968).
    [CrossRef] [PubMed]
  3. I. J. Barton, J. F. Le Marshall, Opt. Lett. 4, 78 (1979).
    [CrossRef] [PubMed]
  4. J. E. Kalshoven, C. L. Korb, J. Opt. Soc. Am. 72, A1801 (1982).
  5. C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979).
  6. J. E. Kalshoven, H. Walden, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC9.
  7. C. S. Gardner, Appl. Opt. 18, 3184 (1979).
    [CrossRef] [PubMed]
  8. J. B. Abshire, “Pulsed Multiwavelength Laser Ranging System,” NASA Tech. Mem. 83917 (Mar.1982).
  9. C. S. Gardner, Appl. Opt. 21, 448 (1982).
    [CrossRef] [PubMed]
  10. B. M. Tsai, C. S. Gardner, Appl. Opt. 21, 3932 (1982).
    [CrossRef] [PubMed]
  11. J. Marini, C. Murray, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees,” NASA Goddard X-doc. 591-73-351 (Nov.1973).
  12. J. C. Owens, Appl. Opt. 6, 51 (1967).
    [CrossRef] [PubMed]
  13. C. S. Gardner, B. M. Tsai, J. B. Abshire, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper MC33.
  14. C. S. Gardner, B. M. Tsai, K. E. Im, Appl. Opt. 22, 2571 (1983).
    [CrossRef] [PubMed]
  15. J. B. Abshire, “Comparison of Measured and Theoretical Performance of a Maximum-Liklihood Laser Ranging Receiver,” in Proceedings, Fourth International Workshop on Laser Ranging Instrumentation, Austin, Tex. (Oct. 1981).
  16. J. L. Bufton, F. E. Hoge, R. N. Swift, Appl. Opt. 22, 2603 (1983).
    [CrossRef] [PubMed]

1983 (2)

1982 (4)

J. E. Kalshoven, C. L. Korb, J. Opt. Soc. Am. 72, A1801 (1982).

J. B. Abshire, “Pulsed Multiwavelength Laser Ranging System,” NASA Tech. Mem. 83917 (Mar.1982).

C. S. Gardner, Appl. Opt. 21, 448 (1982).
[CrossRef] [PubMed]

B. M. Tsai, C. S. Gardner, Appl. Opt. 21, 3932 (1982).
[CrossRef] [PubMed]

1979 (3)

1973 (1)

J. Marini, C. Murray, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees,” NASA Goddard X-doc. 591-73-351 (Nov.1973).

1968 (1)

1967 (1)

Abshire, J. B.

J. B. Abshire, “Pulsed Multiwavelength Laser Ranging System,” NASA Tech. Mem. 83917 (Mar.1982).

C. S. Gardner, B. M. Tsai, J. B. Abshire, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper MC33.

J. B. Abshire, “Comparison of Measured and Theoretical Performance of a Maximum-Liklihood Laser Ranging Receiver,” in Proceedings, Fourth International Workshop on Laser Ranging Instrumentation, Austin, Tex. (Oct. 1981).

Barton, I. J.

Bufton, J. L.

Gardner, C. S.

C. S. Gardner, B. M. Tsai, K. E. Im, Appl. Opt. 22, 2571 (1983).
[CrossRef] [PubMed]

B. M. Tsai, C. S. Gardner, Appl. Opt. 21, 3932 (1982).
[CrossRef] [PubMed]

C. S. Gardner, Appl. Opt. 21, 448 (1982).
[CrossRef] [PubMed]

C. S. Gardner, Appl. Opt. 18, 3184 (1979).
[CrossRef] [PubMed]

C. S. Gardner, B. M. Tsai, J. B. Abshire, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper MC33.

Hoge, F. E.

Im, K. E.

Kalshoven, J. E.

J. E. Kalshoven, C. L. Korb, J. Opt. Soc. Am. 72, A1801 (1982).

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979).

J. E. Kalshoven, H. Walden, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC9.

Korb, C. L.

J. E. Kalshoven, C. L. Korb, J. Opt. Soc. Am. 72, A1801 (1982).

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979).

Le Marshall, J. F.

Marini, J.

J. Marini, C. Murray, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees,” NASA Goddard X-doc. 591-73-351 (Nov.1973).

Murray, C.

J. Marini, C. Murray, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees,” NASA Goddard X-doc. 591-73-351 (Nov.1973).

Owens, J. C.

Singer, S. F.

Swift, R. N.

Tsai, B. M.

C. S. Gardner, B. M. Tsai, K. E. Im, Appl. Opt. 22, 2571 (1983).
[CrossRef] [PubMed]

B. M. Tsai, C. S. Gardner, Appl. Opt. 21, 3932 (1982).
[CrossRef] [PubMed]

C. S. Gardner, B. M. Tsai, J. B. Abshire, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper MC33.

Walden, H.

J. E. Kalshoven, H. Walden, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC9.

Weng, C. Y.

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979).

Appl. Opt. (7)

J. Opt. Soc. Am. (1)

J. E. Kalshoven, C. L. Korb, J. Opt. Soc. Am. 72, A1801 (1982).

NASA Goddard X-doc. 591-73-351 (1)

J. Marini, C. Murray, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees,” NASA Goddard X-doc. 591-73-351 (Nov.1973).

NASA Tech. Mem. 83917 (1)

J. B. Abshire, “Pulsed Multiwavelength Laser Ranging System,” NASA Tech. Mem. 83917 (Mar.1982).

Opt. Lett. (1)

Trans. Am. Geophys. Union (1)

C. L. Korb, J. E. Kalshoven, C. Y. Weng, Trans. Am. Geophys. Union 60, 333 (1979).

Other (4)

J. E. Kalshoven, H. Walden, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TUC9.

“The First GARP Global Experiment,” GARP Publication Series 11, World Meteorological Organization (Mar.1973).

C. S. Gardner, B. M. Tsai, J. B. Abshire, in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper MC33.

J. B. Abshire, “Comparison of Measured and Theoretical Performance of a Maximum-Liklihood Laser Ranging Receiver,” in Proceedings, Fourth International Workshop on Laser Ranging Instrumentation, Austin, Tex. (Oct. 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Conceptual system block diagram.

Fig. 2
Fig. 2

Group refractivity of standard air with 50% RH vs wavelength.

Fig. 3
Fig. 3

Configuration of the horizontal path altimeter system.

Fig. 4
Fig. 4

Typical system delay data set. Each row of numbers are results from a single measurement and contains waveform pulse locations (cols. 2–6), waveform timing (cols. 7 and 8), pulse amplitudes (cols. 9 and 10), and the TIU reading (cols. 12–15).

Fig. 5
Fig. 5

Two-color measurement of atmospheric dispersion.

Fig. 6
Fig. 6

New receiver configuration.

Fig. 7
Fig. 7

Adjustable extended target.

Fig. 8
Fig. 8

Return waveforms from the extended target at 1064 nm.

Fig. 9
Fig. 9

Return waveforms from the extended target at 1064 nm.

Fig. 10
Fig. 10

Return waveforms from the extended target at 1064 nm.

Fig. 11
Fig. 11

Measured beam offsets from laser transmitter.

Fig. 12
Fig. 12

Modeled mean returned waveform from ocean surface used for timing calculations.

Fig. 13
Fig. 13

Centroid (top) and correlation (bottom) receiver performances.

Tables (4)

Tables Icon

Table I Laser Specifications

Tables Icon

Table II Optical System Specifications

Tables Icon

Table III Receiver Electronics

Tables Icon

Table IV Atmospheric Refractivity and Density Constants

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

R a = r oc r sat ( 1 + 10 6 N g ) d r sin θ .
AC i = 10 6 r oc r sat N g ( λ i ) d r sin θ + ( r oc r sat 1 sin θ d r R s ) .
R 12 = AC 1 AC 2
P = [ b + ( b 2 4 ad ) 1 / 2 ] / 2 a ,
a = 4.73 × 10 8 f ( λ 1 ) + f ( λ 2 ) T sin 2 E 2 3 1 / K ,
b = 2.357 × 10 3 + 1.084 × 10 8 T K / ( tan 2 E ) 1.5 × 10 13 T 2 K 2 / [ ( sin 4 E ) ( 2 K ) ] ,
d = F ( θ , H ) R 12 sin E 2 [ f ( λ 1 ) f ( λ 2 ) ] 2.24 × 10 4 e ,
F ( θ , H ) = 1 + 0.0026 cos ( 2 θ ) 0.0003 H ,
K = 1.1163 + 9.68 × 10 3 cos ( 2 θ ) 1.04 × 10 3 T + 1.435 × 10 5 P .
f ( λ ) = 0.9650 + 0.0164 / λ 2 + 2.28 × 10 4 / λ 4 ,
σ Δ T atm [ var ( Δ T atm ) ] 1 / 2 = 51 psec .
Δ T atm = Δ T ref Δ T path [ τ ref τ path ] ,
var ( Δ T atm ) = ( 1 / N ) [ 2 var ( τ d ) + var ( τ p ) + var ( τ p m ) × ( 1 / Q ref + 1 / Q path ) ] ,
Q ref = [ 1 N i = 1 N ( 1 n i + 1 m i ) ] ref 1 ,
Q path = [ 1 N i = 1 N ( 1 n i + 1 m i ) ] path 1 ,
Δ T 31 = T 2 [ 1 r 2 ] Δ r 31 .
r i = r d ( i ) D D + r w ( i ) D w ,
r d ( i ) = a 1 + b 1 ( c 1 + σ i 2 ) ( c 1 σ i 2 ) 2 + d 1 ( e 1 + σ i 2 ) ( e 1 σ i 2 ) 2 ,
r w ( i ) = a 2 + b 2 σ i 2 + c 2 σ i 4 + d 2 σ i 6 ,
D D = P D T [ 1 + P D ( a 3 + b 3 T 1 + c 3 T 2 ) ] ,
D w = P w T [ 1 + P w ( 1 + a 4 P w ) ( b 4 + c 4 T 1 + d 4 T 2 + e 4 T 3 ) ] .
P w = ( RH 100 % ) 6.11 10 7.5 ( T 273.15 ) ( T 36 ) ,
M = A rec [ 2 tan ( θ t ) / λ ] 2 .
E tr = N rec E ph / ( η t p ) ,
t p = t sys t at 2 A rec r oc / ( Ω oc R 2 ) .

Metrics