Abstract

Aerosol particles produced from the ozone and 1,3-butadiene reaction are excited by ultraviolet radiation. Optical emissions from the photoexcited aerosol particles are observed in the 300–800-nm region. The emission intensities are measured at various gas concentrations and reaction times. The aerosol formation mechanisms and the sources responsible for optical emissions are investigated. It is suggested that the small radicals adsorbed on the surfaces of aerosol particles are simultaneously desorbed and excited by UV photons, and the excited radicals subsequently give optical emissions.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Leighton, Photochemistry of Air Pollution (Academic, New York, 1961);R. F. Gould, Ed. Photochemical Smog and Ozone Reactions Vol. 113 (American Chemical Society, Washington, D.C., 1972);G. M. Hidy, P. K. Mueller, D. Grosjean, B. R. Appel, J. J. Wesolowski, Eds. The Character and Origins of Smog Aerosols (Wiley, New York, 1980).
    [CrossRef]
  2. P. S. Bailey, Ozonation in Organic Chemistry (Academic, New York, 1978).
  3. Y. K. Wei, R. J. Cvetanovic, Can. J. Chem. 41, 913 (1963).
    [CrossRef]
  4. L. A. Ripperton, H. E. Jeffries, O. White, Adv. Chem. Ser. 113, 219 (1972).
    [CrossRef]
  5. R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
    [CrossRef]
  6. T. Urbaski, R. J. Cvetanovic, Can. J. Chem. 38, 1063 (1960).
    [CrossRef]
  7. B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 12, 495 (1972).
    [CrossRef]
  8. B. J. Finlayson, J. N. Pitts, R. Atkinson, J. Am. Chem. Soc. 96, 5356 (1974).
    [CrossRef]
  9. R. F. Hampson, “Chemical Kinetic and Photochemical Data Sheets for Atmospheric Reactions,” U.S. Department of Transportation Report FAA-EE-80-17 (1980).
  10. K. H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kinet. 6, 725 (1974).
    [CrossRef]
  11. S. M. Japar, C. H. Wu, H. Niki, J. Phys. Chem. 78, 2318 (1974).
    [CrossRef]
  12. F. S. Toby, S. Toby, Int. J. Chem. Kinet. Symp. No. 1, 197 (1975).
  13. G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand, New York, 1966).
  14. R. L. Day, L. C. Lee, unpublished.
  15. K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1978).
  16. M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
    [CrossRef]
  17. D. C. Marvin, H. Reiss, J. Chem. Phys. 69, 1897 (1978).
    [CrossRef]

1982

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

1980

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

1978

D. C. Marvin, H. Reiss, J. Chem. Phys. 69, 1897 (1978).
[CrossRef]

1975

F. S. Toby, S. Toby, Int. J. Chem. Kinet. Symp. No. 1, 197 (1975).

1974

B. J. Finlayson, J. N. Pitts, R. Atkinson, J. Am. Chem. Soc. 96, 5356 (1974).
[CrossRef]

K. H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kinet. 6, 725 (1974).
[CrossRef]

S. M. Japar, C. H. Wu, H. Niki, J. Phys. Chem. 78, 2318 (1974).
[CrossRef]

1972

B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 12, 495 (1972).
[CrossRef]

L. A. Ripperton, H. E. Jeffries, O. White, Adv. Chem. Ser. 113, 219 (1972).
[CrossRef]

1963

Y. K. Wei, R. J. Cvetanovic, Can. J. Chem. 41, 913 (1963).
[CrossRef]

1960

T. Urbaski, R. J. Cvetanovic, Can. J. Chem. 38, 1063 (1960).
[CrossRef]

Akimoto, H.

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 12, 495 (1972).
[CrossRef]

Atkinson, R.

B. J. Finlayson, J. N. Pitts, R. Atkinson, J. Am. Chem. Soc. 96, 5356 (1974).
[CrossRef]

Bailey, P. S.

P. S. Bailey, Ozonation in Organic Chemistry (Academic, New York, 1978).

Becker, K. H.

K. H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kinet. 6, 725 (1974).
[CrossRef]

Cole, E. I.

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

Cvetanovic, R. J.

Y. K. Wei, R. J. Cvetanovic, Can. J. Chem. 41, 913 (1963).
[CrossRef]

T. Urbaski, R. J. Cvetanovic, Can. J. Chem. 38, 1063 (1960).
[CrossRef]

Day, R. L.

R. L. Day, L. C. Lee, unpublished.

Finlayson, B. J.

B. J. Finlayson, J. N. Pitts, R. Atkinson, J. Am. Chem. Soc. 96, 5356 (1974).
[CrossRef]

B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 12, 495 (1972).
[CrossRef]

Gery, M. W.

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

Hampson, R. F.

R. F. Hampson, “Chemical Kinetic and Photochemical Data Sheets for Atmospheric Reactions,” U.S. Department of Transportation Report FAA-EE-80-17 (1980).

Herzberg, G.

G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand, New York, 1966).

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1978).

Huber, K. P.

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1978).

Jackson, M.

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

Japar, S. M.

S. M. Japar, C. H. Wu, H. Niki, J. Phys. Chem. 78, 2318 (1974).
[CrossRef]

Jeffries, H. E.

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

L. A. Ripperton, H. E. Jeffries, O. White, Adv. Chem. Ser. 113, 219 (1972).
[CrossRef]

Kamens, R. M.

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

Lee, L. C.

R. L. Day, L. C. Lee, unpublished.

Leighton, P. A.

P. A. Leighton, Photochemistry of Air Pollution (Academic, New York, 1961);R. F. Gould, Ed. Photochemical Smog and Ozone Reactions Vol. 113 (American Chemical Society, Washington, D.C., 1972);G. M. Hidy, P. K. Mueller, D. Grosjean, B. R. Appel, J. J. Wesolowski, Eds. The Character and Origins of Smog Aerosols (Wiley, New York, 1980).
[CrossRef]

Marvin, D. C.

D. C. Marvin, H. Reiss, J. Chem. Phys. 69, 1897 (1978).
[CrossRef]

Nakamura, M.

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

Niki, H.

S. M. Japar, C. H. Wu, H. Niki, J. Phys. Chem. 78, 2318 (1974).
[CrossRef]

Okuda, M.

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

Pitts, J. N.

B. J. Finlayson, J. N. Pitts, R. Atkinson, J. Am. Chem. Soc. 96, 5356 (1974).
[CrossRef]

B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 12, 495 (1972).
[CrossRef]

Reiss, H.

D. C. Marvin, H. Reiss, J. Chem. Phys. 69, 1897 (1978).
[CrossRef]

Ripperton, L. A.

L. A. Ripperton, H. E. Jeffries, O. White, Adv. Chem. Ser. 113, 219 (1972).
[CrossRef]

Schurath, U.

K. H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kinet. 6, 725 (1974).
[CrossRef]

Seitz, H.

K. H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kinet. 6, 725 (1974).
[CrossRef]

Suto, M.

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

Toby, F. S.

F. S. Toby, S. Toby, Int. J. Chem. Kinet. Symp. No. 1, 197 (1975).

Toby, S.

F. S. Toby, S. Toby, Int. J. Chem. Kinet. Symp. No. 1, 197 (1975).

Urbaski, T.

T. Urbaski, R. J. Cvetanovic, Can. J. Chem. 38, 1063 (1960).
[CrossRef]

Washida, N.

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

Wei, Y. K.

Y. K. Wei, R. J. Cvetanovic, Can. J. Chem. 41, 913 (1963).
[CrossRef]

White, O.

L. A. Ripperton, H. E. Jeffries, O. White, Adv. Chem. Ser. 113, 219 (1972).
[CrossRef]

Wu, C. H.

S. M. Japar, C. H. Wu, H. Niki, J. Phys. Chem. 78, 2318 (1974).
[CrossRef]

Adv. Chem. Ser.

L. A. Ripperton, H. E. Jeffries, O. White, Adv. Chem. Ser. 113, 219 (1972).
[CrossRef]

Can. J. Chem.

T. Urbaski, R. J. Cvetanovic, Can. J. Chem. 38, 1063 (1960).
[CrossRef]

Y. K. Wei, R. J. Cvetanovic, Can. J. Chem. 41, 913 (1963).
[CrossRef]

Chem. Phys. Lett.

B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 12, 495 (1972).
[CrossRef]

Int. J. Chem. Kinet.

R. M. Kamens, M. W. Gery, H. E. Jeffries, M. Jackson, E. I. Cole, Int. J. Chem. Kinet. 14, 955 (1982).
[CrossRef]

K. H. Becker, U. Schurath, H. Seitz, Int. J. Chem. Kinet. 6, 725 (1974).
[CrossRef]

Int. J. Chem. Kinet. Symp.

F. S. Toby, S. Toby, Int. J. Chem. Kinet. Symp. No. 1, 197 (1975).

J. Am. Chem. Soc.

B. J. Finlayson, J. N. Pitts, R. Atkinson, J. Am. Chem. Soc. 96, 5356 (1974).
[CrossRef]

J. Chem. Phys.

M. Suto, N. Washida, H. Akimoto, M. Nakamura, M. Okuda, J. Chem. Phys. 73, 591 (1980).
[CrossRef]

D. C. Marvin, H. Reiss, J. Chem. Phys. 69, 1897 (1978).
[CrossRef]

J. Phys. Chem.

S. M. Japar, C. H. Wu, H. Niki, J. Phys. Chem. 78, 2318 (1974).
[CrossRef]

Other

G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand, New York, 1966).

R. L. Day, L. C. Lee, unpublished.

K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1978).

R. F. Hampson, “Chemical Kinetic and Photochemical Data Sheets for Atmospheric Reactions,” U.S. Department of Transportation Report FAA-EE-80-17 (1980).

P. A. Leighton, Photochemistry of Air Pollution (Academic, New York, 1961);R. F. Gould, Ed. Photochemical Smog and Ozone Reactions Vol. 113 (American Chemical Society, Washington, D.C., 1972);G. M. Hidy, P. K. Mueller, D. Grosjean, B. R. Appel, J. J. Wesolowski, Eds. The Character and Origins of Smog Aerosols (Wiley, New York, 1980).
[CrossRef]

P. S. Bailey, Ozonation in Organic Chemistry (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of experimental apparatus.

Fig. 2
Fig. 2

Chemiluminescence from O3–C4H6 reaction and optical emission from photoexcitation of reaction products at various reaction distance. The initial [O3] was fixed at 9 × 1015 cm−3 in an O2 pressure of ∼100 Torr. ○ and △ are the chemiluminescence for the initial [C4H6] of 7.8 × 1014 cm−3 and 8.5 × 1015 cm−3, respectively. ● and ▲ are the sum of chemiluminescence and optical emission for the respective C4H6 concentrations. Both the chemiluminescence and optical emission are observed in the 300–800-nm region. The excitation light source is mainly CI 193 nm, which is produced by a microwave discharge of trace CH4 in Ar and isolated by an optical filter of 180 ± 36 nm.

Fig. 3
Fig. 3

Optical emission at 300–370 nm when the O3–C4H6 reaction products produced at various reaction distance (centimeters) are excited by a light source of 180 ± 36 nm. The initial [O3] is 8.4 × 1015 cm−3 and [C4H6] is 8.5 − 1015 cm−3 in an O2 pressure of ∼100 Torr.

Fig. 4
Fig. 4

Same as Fig. 3 except that optical emission is observed at 370–800 nm.

Fig. 5
Fig. 5

Optical emission at 300–800 nm when the O3–C4H6 reaction products produced at various reaction distance (centimeters) are excited by a light source of 254 ± 10 nm. The initial [O3] is 9.0 × 1015 cm−3 and [C4H6] is 8.5 × 1015 cm−3 in an O2 pressure of ∼100 Torr.

Fig. 6
Fig. 6

Optical emission at 310 ± 10 nm when the O3–C4H6 reaction products produced at various reaction distance are excited by the OH(A2Σ+ → X2II) band at 306–320 nm. The initial [O3] is 8.4 × 1015 cm−3 and [C4H6] is 8.5 × 1015 cm−3 in an O2 pressure of ∼100 Torr.

Fig. 7
Fig. 7

Optical emissions when the products of an initial [C4H6] of 8.5 × 1015 cm−3 reacting with various [O3] in an O2 pressure of ∼100 Torr at reaction distances of 25 cm (unfilled) and 75 cm (filled) are photoexcited. (○ and ●) are for the excitation light at 306–320 nm and the optical emission at 310 ± 10 nm. △ and ▲ and □ and ■ are for the excitation light source at 180 ± 36 nm and the optical emissions in the 300–370- and the 370–800-nm regions, respectively.

Metrics