Abstract

A method is described for directly measuring atmospheric winds in the 20–120-km altitude interval from a spacecraft. The principle of operation of the wind sensor is the measurement of the Doppler shift between the spectral absorption lines of a gas in a cell within the instrument and the thermal emission lines of the same gas in the atmosphere. The wind measurements are to be made with a spacecraft-borne gas correlation spectrometer viewing the limb of the atmosphere. The measurement of the wind-induced Doppler shift between the two spectra, and thence the magnitude of the wind itself, is accomplished by phase modulating the incoming thermal radiation (equivalent to frequency modulation) by means of an electrooptically active crystal to determine the frequency shift required to reestablish exact correlation between the lines in the cell and the lines from the atmosphere. Results of numerical simulations of the wind-sensor performance are presented showing the noise-equivalent-wind to be between 1 and 5 m/sec over most of the stratosphere and mesosphere.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Drummond et al., Philos. Trans. R. Soc. London Ser. A 296, 219 (1980).
    [CrossRef]
  2. P. B. Hays, Appl. Opt. 21, 1136 (1982).
    [CrossRef] [PubMed]
  3. J. Waters, JPL Report 750-156, Microwave Limb Sounder (MLS) TR/Instrument Description (1981).
  4. R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo. ERL WPL-37 (1978);R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (1980).
  5. V. J. Abreu, Appl. Opt. 18, 2992 (1979).
    [CrossRef] [PubMed]
  6. J. C. Bates, Infrared Phys. 7, 181 (1967).
    [CrossRef]
  7. D. J. McCleese, J. S. Margolis, J. Ballard, Appl. Opt. submitted.
  8. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971), Chap. 9.
  9. C. F. Buhrer, L. R. Bloom, D. H. Baird, Appl. Opt. 2, 839 (1963).
    [CrossRef]
  10. L. F. Champagne, E. O'Neil, W. T. Whitney, Opt. Commun. 13, 282 (1975).
    [CrossRef]
  11. G. M. Carter, Appl. Phys. Lett. 32, 810 (1978).
    [CrossRef]
  12. A. L. Scholtz, W. R. Leeb, E. Bonek, IEEE J. Quantum Electron. QE-18, 1021 (1982).
    [CrossRef]
  13. R. A. Toth, California Institute of Technology, Jet Propulsion Laboratory (1982); private communication.
  14. L. S. Rothman, Appl. Opt. 20, 791 (1981).
    [CrossRef] [PubMed]
  15. U.S. Standard Atmosphere (U.S. GPO, Washington, D.C., 1962).
  16. J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
    [CrossRef]
  17. J. T. Houghton, The Physics of Atmospheres (Cambridge U. P., Cambridge, 1977).

1982 (2)

A. L. Scholtz, W. R. Leeb, E. Bonek, IEEE J. Quantum Electron. QE-18, 1021 (1982).
[CrossRef]

P. B. Hays, Appl. Opt. 21, 1136 (1982).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

J. R. Drummond et al., Philos. Trans. R. Soc. London Ser. A 296, 219 (1980).
[CrossRef]

1979 (1)

1978 (2)

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
[CrossRef]

G. M. Carter, Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

1975 (1)

L. F. Champagne, E. O'Neil, W. T. Whitney, Opt. Commun. 13, 282 (1975).
[CrossRef]

1967 (1)

J. C. Bates, Infrared Phys. 7, 181 (1967).
[CrossRef]

1963 (1)

Abreu, V. J.

Baird, D. H.

Ballard, J.

D. J. McCleese, J. S. Margolis, J. Ballard, Appl. Opt. submitted.

Bates, J. C.

J. C. Bates, Infrared Phys. 7, 181 (1967).
[CrossRef]

Bloom, L. R.

Bonek, E.

A. L. Scholtz, W. R. Leeb, E. Bonek, IEEE J. Quantum Electron. QE-18, 1021 (1982).
[CrossRef]

Buhrer, C. F.

Carter, G. M.

G. M. Carter, Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

Champagne, L. F.

L. F. Champagne, E. O'Neil, W. T. Whitney, Opt. Commun. 13, 282 (1975).
[CrossRef]

Drummond, J. R.

J. R. Drummond et al., Philos. Trans. R. Soc. London Ser. A 296, 219 (1980).
[CrossRef]

Hays, P. B.

Houghton, J. T.

J. T. Houghton, The Physics of Atmospheres (Cambridge U. P., Cambridge, 1977).

Leeb, W. R.

A. L. Scholtz, W. R. Leeb, E. Bonek, IEEE J. Quantum Electron. QE-18, 1021 (1982).
[CrossRef]

Logan, J. A.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
[CrossRef]

Margolis, J. S.

D. J. McCleese, J. S. Margolis, J. Ballard, Appl. Opt. submitted.

McCleese, D. J.

D. J. McCleese, J. S. Margolis, J. Ballard, Appl. Opt. submitted.

McElroy, M. B.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
[CrossRef]

O'Neil, E.

L. F. Champagne, E. O'Neil, W. T. Whitney, Opt. Commun. 13, 282 (1975).
[CrossRef]

Prather, M. J.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
[CrossRef]

Rothman, L. S.

Scholtz, A. L.

A. L. Scholtz, W. R. Leeb, E. Bonek, IEEE J. Quantum Electron. QE-18, 1021 (1982).
[CrossRef]

Toth, R. A.

R. A. Toth, California Institute of Technology, Jet Propulsion Laboratory (1982); private communication.

Waters, J.

J. Waters, JPL Report 750-156, Microwave Limb Sounder (MLS) TR/Instrument Description (1981).

Whitney, W. T.

L. F. Champagne, E. O'Neil, W. T. Whitney, Opt. Commun. 13, 282 (1975).
[CrossRef]

Wofsy, S. C.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971), Chap. 9.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. M. Carter, Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. L. Scholtz, W. R. Leeb, E. Bonek, IEEE J. Quantum Electron. QE-18, 1021 (1982).
[CrossRef]

Infrared Phys. (1)

J. C. Bates, Infrared Phys. 7, 181 (1967).
[CrossRef]

Opt. Commun. (1)

L. F. Champagne, E. O'Neil, W. T. Whitney, Opt. Commun. 13, 282 (1975).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A (2)

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Philos. Trans. R. Soc. London Ser. A 290, 187 (1978).
[CrossRef]

J. R. Drummond et al., Philos. Trans. R. Soc. London Ser. A 296, 219 (1980).
[CrossRef]

Other (7)

J. Waters, JPL Report 750-156, Microwave Limb Sounder (MLS) TR/Instrument Description (1981).

R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Memo. ERL WPL-37 (1978);R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II,” NOAA Tech. Memo. ERL WPL-63 (1980).

D. J. McCleese, J. S. Margolis, J. Ballard, Appl. Opt. submitted.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971), Chap. 9.

R. A. Toth, California Institute of Technology, Jet Propulsion Laboratory (1982); private communication.

U.S. Standard Atmosphere (U.S. GPO, Washington, D.C., 1962).

J. T. Houghton, The Physics of Atmospheres (Cambridge U. P., Cambridge, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the correlation of atmospheric emission spectrum with reference cell absorption spectrum with no Doppler shift. Linewidths and spacing are not to scale.

Fig. 2
Fig. 2

Schematic representation of the correlation of atmospheric emission spectrum with reference cell absorption spectrum as in Fig. 1, except with a Doppler shift.

Fig. 3
Fig. 3

Velocity components involved in wind measurement. Vs/c is the spacecraft velocity, VE is the velocity due to the earth's rotation, and u and υ are the zonal and meridional components of the wind.

Fig. 4
Fig. 4

Effect of phase modulation on a single isolated emission line. The integrated areas under the modulated and unmodulated emissions are equal. νm is the modulation frequency applied to the electrooptic crystal.

Fig. 5
Fig. 5

Variation of radiance at the detector with EOPM modulation frequency (solid line) and the idealized parabolic dependence of radiance on modulation frequency (dashed line). The numbered points indicate modulator frequencies used (1 to 2 and 3 to 4).

Fig. 6
Fig. 6

Limb-viewing geometry for the wind sensor showing forward and aft views. For a 600-km orbit the distance from the spacecraft to the limb tangent point is ∼2500 km, and the spacecraft velocity is Vs/c = 7.6 km/sec.

Fig. 7
Fig. 7

Noise-equivalent-wind computed for the wind sensor described in text. The vertical dashed line is the measurement accuracy limit due to uncertainties in spacecraft pointing.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = V c ν ,
V = ( V s / c cos θ V E cos L u ) cos ϕ ( V s / c sin θ υ ) sin ϕ ,
ɛ = A { J o ( δ ) cos ν t + n = 1 [ J n ( δ ) cos ( ν + n ν m o ) t + ( 1 ) n J n ( δ ) cos ( ν n ν m o ) t ] } ,
δ = 2 n o 3 r 41 U 3 λ ( L / D ) ( light polarized parallel to U ) ,
δ = π n o 3 r 41 U 3 λ ( L / D ) ( light polarized perpendicular to U ) ,
R = A Ω { 0 f ν T ν c M [ 0 P t B ν [ θ ( p ) ] T ν a ( p ) ( ln p ) d ( ln p ) d ν ] } ,
ν m o = 1 2 R 12 ( ν 3 2 ν 4 2 ) R 34 ( ν 1 2 ν 2 2 ) R 34 ν 12 R 12 ν 34 ,
d ν m o = 2 Δ ν / SNR .

Metrics