Abstract

A new laser Doppler imaging system with a TV camera has been constructed, which brightly displays 1-D velocity distribution on a monitor. Some characteristics of this system have been experimentally investigated from measurements of simple velocity distribution on a constantly rotating ground glass disk. From an adaptation to fluid flow, it has been shown that the measurements of spatial velocity distribution can be achieved in real time.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Butters, J. A. Leenderz, Opt. Laser Technol. 3, 26 (1971).
    [CrossRef]
  2. A. Macovski, S. D. Ramsey, L. F. Schaefer, Appl. Opt. 10, 2722 (1971).
    [CrossRef] [PubMed]
  3. O. J. Løfkberg, K. Høgmoen, J. Phys. E 67, 1578 (1976).
  4. K. Høgmoen, H. M. Pederson, J. Opt. Soc. Am. 67, 1578 (1977).
    [CrossRef]
  5. S. Nakadate, T. Yatagai, H. Saito, Appl. Opt. 19, 1879 (1980).
    [CrossRef]
  6. W. T. Mayo, J. B. Allen, Appl. Opt. 10, 2119 (1971).
    [CrossRef] [PubMed]
  7. A. Macovski, Appl. Opt. 9, 1906 (1970).
    [PubMed]
  8. T. Sato, Y. Nakatani, M. Ueda, Appl. Opt. 13, 2759 (1974).
    [CrossRef] [PubMed]
  9. T. Sato, T. Kishimoto, Y. Nakatani, Appl. Opt. 15, 867 (1976).
    [CrossRef] [PubMed]
  10. T. Sato, Y. Nakatani, M. Ueda, Appl. Opt. 16, 1263 (1977).
    [CrossRef] [PubMed]
  11. T. Yoshimura, H. Yamamoto, N. Wakabayashi, Opt. Commun. 40, 10 (1981).
    [CrossRef]
  12. J. W. Goodman, Appl. Opt. 6, 857 (1967).
    [CrossRef] [PubMed]

1981 (1)

T. Yoshimura, H. Yamamoto, N. Wakabayashi, Opt. Commun. 40, 10 (1981).
[CrossRef]

1980 (1)

1977 (2)

1976 (2)

T. Sato, T. Kishimoto, Y. Nakatani, Appl. Opt. 15, 867 (1976).
[CrossRef] [PubMed]

O. J. Løfkberg, K. Høgmoen, J. Phys. E 67, 1578 (1976).

1974 (1)

1971 (3)

1970 (1)

1967 (1)

Allen, J. B.

Butters, J. N.

J. N. Butters, J. A. Leenderz, Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Goodman, J. W.

Høgmoen, K.

K. Høgmoen, H. M. Pederson, J. Opt. Soc. Am. 67, 1578 (1977).
[CrossRef]

O. J. Løfkberg, K. Høgmoen, J. Phys. E 67, 1578 (1976).

Kishimoto, T.

Leenderz, J. A.

J. N. Butters, J. A. Leenderz, Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Løfkberg, O. J.

O. J. Løfkberg, K. Høgmoen, J. Phys. E 67, 1578 (1976).

Macovski, A.

Mayo, W. T.

Nakadate, S.

Nakatani, Y.

Pederson, H. M.

Ramsey, S. D.

Saito, H.

Sato, T.

Schaefer, L. F.

Ueda, M.

Wakabayashi, N.

T. Yoshimura, H. Yamamoto, N. Wakabayashi, Opt. Commun. 40, 10 (1981).
[CrossRef]

Yamamoto, H.

T. Yoshimura, H. Yamamoto, N. Wakabayashi, Opt. Commun. 40, 10 (1981).
[CrossRef]

Yatagai, T.

Yoshimura, T.

T. Yoshimura, H. Yamamoto, N. Wakabayashi, Opt. Commun. 40, 10 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical system of the LDI system.

Fig. 2
Fig. 2

Relationship between the velocity Vx and the detected position Φ for a given frequency offset Δf when the incident angle θ = 0.

Fig. 3
Fig. 3

Multiexposure monitor display for some frequency offsets of the reference beam.

Fig. 4
Fig. 4

Monitor displays for some rotation rates at incident angle θ = 2.83°: (a) Ω = −2 rpm, Δf = −200 Hz; (b) −5 rpm, −500 Hz; (c) −10 rpm, −1 kHz; (d) −20 rpm, −2 kHz; (e) 5 rpm, 500 Hz.

Fig. 5
Fig. 5

Theoretical velocity profile in a rectangular cell under the average velocity of 1.05 mm /sec.

Fig. 6
Fig. 6

Monitor displays of fluid flow velocity distribution in the rectangular cell: (a) Δf = −300 Hz; (b) Δf = −500 Hz.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f D = 1 2 π ( k s k i ) V ( x , y , t ) ,
f D ( ξ , η , t ) = f D ( ξ , y , t ) = V x ( x , y , t ) λ ( ξ F c 2 + ξ 2 sin θ ) .
X = M ξ , Y = M η ,
U o ( X , Y , t ) = h o exp [ i ( 2 π f 0 t + ϕ o 2 π X λ sin ψ o ) ] ,
U r ( X , Y , t ) = h r exp [ i ( 2 π f r t + ϕ r 2 π X λ sin ψ r ) ] ,
E ( X , Y ) = | U o + U r | 2 rect ( t / T ) d t = T ( | h o | 2 + | h r | 2 ) + 2 T h o h r * sinc [ Δ F ( X , Y ) T ] × cos [ 2 π f X X + Δ ϕ ] ,
f t = V h f X .
i ( t ) = T ( | h o | 2 + | h r | 2 ) + 2 T h o h r * sinc [ Δ F ( X , Y ) T ] cos [ 2 π f t t + Δ ϕ ] .
Δ f = V x ( x , y ) λ ( Φ 1 + Φ 2 sin θ ) ,
V x ( x , y ) = Ω ( y y 0 ) ,
Δ V V = Δ f ( 1 Δ f f B 1 Δ f + f B ) ,

Metrics