Abstract

Analysis and experiments on TE and TM waves along periodically laminated metal–dielectric layers are described; the waves propagate parallel to the layers. Aluminum (Al) and silica (SiO2) are chosen as the metal and the dielectric, respectively. We find that the attenuation for TE waves is much higher than that for TM waves. Typically, αTE/αTM ranges from 103 to 104. Thus, an optical polarizer can be made in a multilayer structure.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
    [CrossRef]
  2. A. F. Harvey, Microwave Engineering (Academic, London, 1963), pp. 595 and 596.
  3. R. A. Smith, F. E. Jones, R. P. Chasmer, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1968), pp. 414 and 415.
  4. K. Kudo, Kiso Bussei Zuhyo (Tables of Fundamental Properties of Materials) (Kyoritsu Shuppan, Tokyo, 1972), in Japanese.
  5. K. Kikuchi, Y. Aizawa, S. Kawakami, Rec. Electr. Commun. Eng. Conv. Tohoku Univ. 49, 55 (June1980), in Japanese.
  6. S. Kawakami, K. Shiraishi, “Components for Fiber-Type Isolator,” Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June 1983), paper 29C3.

1980 (1)

K. Kikuchi, Y. Aizawa, S. Kawakami, Rec. Electr. Commun. Eng. Conv. Tohoku Univ. 49, 55 (June1980), in Japanese.

1972 (1)

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Aizawa, Y.

K. Kikuchi, Y. Aizawa, S. Kawakami, Rec. Electr. Commun. Eng. Conv. Tohoku Univ. 49, 55 (June1980), in Japanese.

Chasmer, R. P.

R. A. Smith, F. E. Jones, R. P. Chasmer, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1968), pp. 414 and 415.

Hamasaki, J.

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Harvey, A. F.

A. F. Harvey, Microwave Engineering (Academic, London, 1963), pp. 595 and 596.

Jones, F. E.

R. A. Smith, F. E. Jones, R. P. Chasmer, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1968), pp. 414 and 415.

Kawakami, S.

K. Kikuchi, Y. Aizawa, S. Kawakami, Rec. Electr. Commun. Eng. Conv. Tohoku Univ. 49, 55 (June1980), in Japanese.

S. Kawakami, K. Shiraishi, “Components for Fiber-Type Isolator,” Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June 1983), paper 29C3.

Kikuchi, K.

K. Kikuchi, Y. Aizawa, S. Kawakami, Rec. Electr. Commun. Eng. Conv. Tohoku Univ. 49, 55 (June1980), in Japanese.

Kudo, K.

K. Kudo, Kiso Bussei Zuhyo (Tables of Fundamental Properties of Materials) (Kyoritsu Shuppan, Tokyo, 1972), in Japanese.

Shiraishi, K.

S. Kawakami, K. Shiraishi, “Components for Fiber-Type Isolator,” Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June 1983), paper 29C3.

Smith, R. A.

R. A. Smith, F. E. Jones, R. P. Chasmer, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1968), pp. 414 and 415.

Takano, T.

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Takano, J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Rec. Electr. Commun. Eng. Conv. Tohoku Univ. (1)

K. Kikuchi, Y. Aizawa, S. Kawakami, Rec. Electr. Commun. Eng. Conv. Tohoku Univ. 49, 55 (June1980), in Japanese.

Other (4)

S. Kawakami, K. Shiraishi, “Components for Fiber-Type Isolator,” Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June 1983), paper 29C3.

A. F. Harvey, Microwave Engineering (Academic, London, 1963), pp. 595 and 596.

R. A. Smith, F. E. Jones, R. P. Chasmer, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1968), pp. 414 and 415.

K. Kudo, Kiso Bussei Zuhyo (Tables of Fundamental Properties of Materials) (Kyoritsu Shuppan, Tokyo, 1972), in Japanese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the metal–dielectric multilayer structure.

Fig. 2
Fig. 2

Relation between the phase difference per period and the launch condition.

Fig. 3
Fig. 3

Wavelength dependence of the complex propagation constants for the TE and TM waves. Solid lines represent computer solutions of the characteristic equation, dashed lines approximate solutions given by Eqs. (8) and (9), and the dash–dot line represents the plane wave propagation constant in medium 2. For βTM, the computer solution and closed-form approximation give nearly the same result.

Fig. 4
Fig. 4

Phase and amplitude distribution within the metal and dielectric: (a) TM wave, (b) TE wave.

Fig. 5
Fig. 5

Electron microscope view of the endface. The photo was taken by the replica method.

Fig. 6
Fig. 6

Transmittance as a function of position. The solid and dashed lines represent the TM and TE waves, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λ > d 2 d 1 ,
Θ = 2 π ( d 1 + d 2 ) sin θ / λ ,
( χ + 1 / χ ) sinh p 1 d 1 sinh p 2 d 2 / 2 + cosh p 1 d 1 cosh p 2 d 2 = cos Θ ,
χ { = p 1 / p 2 for the TE wave = s 2 p 1 / s 1 p 2 for the TM wave ,
p 1 2 p 2 2 = ( 2 π / λ ) 2 ( s 2 s 1 ) ,
γ 2 = ( 2 π / λ ) 2 s 2 p 2 2 = ( 2 π / λ ) 2 s 1 p 1 2 ,
| p 1 d 1 | , | p 2 d 2 | 1 .
γ TE 2 = ( 2 π λ ) 2 s 2 ( Θ d 1 + d 2 ) 2 d 1 d 1 + d 2 ( 2 π λ ) 2 ( s 1 s 2 ) ,
γ TM 2 = ( 2 π λ ) 2 s 1 Θ 2 d 1 2 + ( s 2 / s 1 + s 1 / s 2 ) d 1 d 2 + d 2 2 d 1 / s 1 d 1 / s 1 + d 2 / s 2 ( 2 π λ ) 2 ( s 1 s 2 ) .
α TM α TE ~ | s 2 s 1 | 2 ,

Metrics