Abstract

Refractive-index dispersion measurements were performed on bulk specimens of 2-, 4-, or 6-mol % AlF3 doped 33BaF2–4GdF3–63ZrF4 (mol %) glass and 4-mol % LiF, CsF, YF3, CdF2, SnF2, or PbF2 doped 31.68BaF2–3.84GdF3–60.48ZrF4–4AlF3 (mol %) glass in the wavelength region from 0.4047 to 5.3036 μm. The material dispersion curve and zero material dispersion wavelength were estimated on the basis of refractive-index dispersion measurements. The slope of the material dispersion curve for these fluoride glasses was less steep than that for SiO2 glass in the wavelength range estimated. The zero material wavelength λ0 shifted to a shorter wavelength with increasing AlF3 concentration. The λ0 is 1.675 μm for 31.68BaF2– 3.84GdF3–60.48ZrF4–4AlF3 (mol %) glass. When 4-mol % LiF, CsF, YF3, CdF2, SnF2, or PbF2 were doped into these glasses, each λ0 shifted from 1.675 to 1.670, 1.668, 1.673, 1.681, 1.683, or 1.704 μm, respectively. The temperature dependence values of the refractive-index dispersion and material dispersion for 31.68BaF2–3.84GdF3–60.48ZrF4–4AlF3 (mol %) glass were also obtained. The temperature coefficients of the refractive index were negative values (dn/dTrelative = −1.0 × 10−5/°C) and the wavelength dependence of dn/dT was small. The wavelength λ0 shifted from 1.675 to 1.605 μm, due to the rise in the measurement temperature from 25° C to 250° C.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. L. Goodman, Solid State Electron. Devices 2, 129 (1980).
    [CrossRef]
  2. S. Mitachi, T. Manabe, Jpn. J. Appl. Phys. 19, L313 (1980).
    [CrossRef]
  3. R. J. Ginther, D. C. Tran, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper MI3.
  4. S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
    [CrossRef]
  5. T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
    [CrossRef]
  6. K. Nassau, Electron. Lett. 16, 924 (1980).
    [CrossRef]
  7. K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
    [CrossRef]
  8. L. Jeunhomme, H. Poignant, M. Monerie, Electron. Lett. 17, 809 (1981).
    [CrossRef]
  9. S. Mitachi, T. Miyashita, Electron. Lett. 18, 170 (1982).
    [CrossRef]
  10. N. Shibata, T. Edahiro, Trans. IECE Jpn. E65, 166 (1982).
  11. K. H. Sun, Glass Technol. 20, 36 (1979).
  12. A. Lecoq, M. Poulain, J. Non-Cryst. Solids 34, 101 (1989).
    [CrossRef]
  13. L. Prod'homme, Phys. Chem. Glasses 1, 119 (1960).
  14. W. S. Rodney, R. J. Spindler, J. Research Natl. Bur. Stand. 185 (1954).
  15. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
    [CrossRef]

1989 (1)

A. Lecoq, M. Poulain, J. Non-Cryst. Solids 34, 101 (1989).
[CrossRef]

1982 (3)

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

S. Mitachi, T. Miyashita, Electron. Lett. 18, 170 (1982).
[CrossRef]

N. Shibata, T. Edahiro, Trans. IECE Jpn. E65, 166 (1982).

1981 (3)

L. Jeunhomme, H. Poignant, M. Monerie, Electron. Lett. 17, 809 (1981).
[CrossRef]

T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

1980 (4)

K. Nassau, Electron. Lett. 16, 924 (1980).
[CrossRef]

C. H. L. Goodman, Solid State Electron. Devices 2, 129 (1980).
[CrossRef]

S. Mitachi, T. Manabe, Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
[CrossRef]

1979 (1)

K. H. Sun, Glass Technol. 20, 36 (1979).

1960 (1)

L. Prod'homme, Phys. Chem. Glasses 1, 119 (1960).

1954 (1)

W. S. Rodney, R. J. Spindler, J. Research Natl. Bur. Stand. 185 (1954).

Edahiro, T.

N. Shibata, T. Edahiro, Trans. IECE Jpn. E65, 166 (1982).

Ginther, R. J.

R. J. Ginther, D. C. Tran, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper MI3.

Goodman, C. H. L.

C. H. L. Goodman, Solid State Electron. Devices 2, 129 (1980).
[CrossRef]

Horiguchi, M.

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

Jeunhomme, L.

L. Jeunhomme, H. Poignant, M. Monerie, Electron. Lett. 17, 809 (1981).
[CrossRef]

Jinguji, K.

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

Kanamori, T.

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
[CrossRef]

Lecoq, A.

A. Lecoq, M. Poulain, J. Non-Cryst. Solids 34, 101 (1989).
[CrossRef]

Manabe, T.

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
[CrossRef]

S. Mitachi, T. Manabe, Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

Mitachi, S.

S. Mitachi, T. Miyashita, Electron. Lett. 18, 170 (1982).
[CrossRef]

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
[CrossRef]

S. Mitachi, T. Manabe, Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

Miyashita, T.

S. Mitachi, T. Miyashita, Electron. Lett. 18, 170 (1982).
[CrossRef]

Monerie, M.

L. Jeunhomme, H. Poignant, M. Monerie, Electron. Lett. 17, 809 (1981).
[CrossRef]

Nassau, K.

K. Nassau, Electron. Lett. 16, 924 (1980).
[CrossRef]

Oikawa, K.

T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
[CrossRef]

Poignant, H.

L. Jeunhomme, H. Poignant, M. Monerie, Electron. Lett. 17, 809 (1981).
[CrossRef]

Poulain, M.

A. Lecoq, M. Poulain, J. Non-Cryst. Solids 34, 101 (1989).
[CrossRef]

Prod'homme, L.

L. Prod'homme, Phys. Chem. Glasses 1, 119 (1960).

Rodney, W. S.

W. S. Rodney, R. J. Spindler, J. Research Natl. Bur. Stand. 185 (1954).

Shibata, N.

N. Shibata, T. Edahiro, Trans. IECE Jpn. E65, 166 (1982).

Shibata, S.

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
[CrossRef]

Spindler, R. J.

W. S. Rodney, R. J. Spindler, J. Research Natl. Bur. Stand. 185 (1954).

Sun, K. H.

K. H. Sun, Glass Technol. 20, 36 (1979).

Tran, D. C.

R. J. Ginther, D. C. Tran, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper MI3.

Electron. Lett (1)

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe, Electron. Lett 17, 775 (1981).
[CrossRef]

Electron. Lett. (4)

K. Nassau, Electron. Lett. 16, 924 (1980).
[CrossRef]

K. Jinguji, M. Horiguchi, S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Electron. Lett. 18, 164 (1982).
[CrossRef]

L. Jeunhomme, H. Poignant, M. Monerie, Electron. Lett. 17, 809 (1981).
[CrossRef]

S. Mitachi, T. Miyashita, Electron. Lett. 18, 170 (1982).
[CrossRef]

Glass Technol. (1)

K. H. Sun, Glass Technol. 20, 36 (1979).

J. Non-Cryst. Solids (1)

A. Lecoq, M. Poulain, J. Non-Cryst. Solids 34, 101 (1989).
[CrossRef]

J. Research Natl. Bur. Stand. (1)

W. S. Rodney, R. J. Spindler, J. Research Natl. Bur. Stand. 185 (1954).

Jpn. J. Appl. Phys. (2)

T. Kanamori, K. Oikawa, S. Shibata, T. Manabe, Jpn. J. Appl. Phys. 20, L326 (1981).
[CrossRef]

S. Mitachi, T. Manabe, Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

Mater. Res. Bull. (1)

S. Shibata, T. Kanamori, S. Mitachi, T. Manabe, Mater. Res. Bull. 15, 129 (1980).
[CrossRef]

Phys. Chem. Glasses (1)

L. Prod'homme, Phys. Chem. Glasses 1, 119 (1960).

Solid State Electron. Devices (1)

C. H. L. Goodman, Solid State Electron. Devices 2, 129 (1980).
[CrossRef]

Trans. IECE Jpn. (1)

N. Shibata, T. Edahiro, Trans. IECE Jpn. E65, 166 (1982).

Other (1)

R. J. Ginther, D. C. Tran, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper MI3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive-index dispersion for AlF3 doped BGZ glasses: A, BGZA(2); B, BGZA(6).

Fig. 2
Fig. 2

Relative refractive-index difference Δn: A, Δn between BGZA(2) and BGZA(6); B, Δn between BGZA(4) and BGZA(6).

Fig. 3
Fig. 3

Refractive-index dispersion for LiF, CsF, CdF2 SnF2, PbF2 or YF3 doped BGZA glass: 1, 4-mol % PbF2 doped BGZA; 2, 4-mol % SnF2 doped BGZA; 3, 4-mol % LiF doped BGZA; 4, 4-mol % CdF2 doped BGZA; 5, 4-mol % CsF doped BGZA; 6, 4-mol % YF3 doped BGZA; 7, BGZA.

Fig. 4
Fig. 4

Wavelength dependence of the relative refractive-index differences An between BGZA and 4-mol % PbF2, SnF2, LiF, CsF, CdF2, or YF3 doped BGZA; 1, Δn for BGZAPb(4) and BGZA; 2, Δn for BGZASn(4) and BGZA; 3, Δn for BGZALi(4) and BGZA; 4, Δn for BGZACs(4) and BGZA; 5, Δn for BGZACd(4) and BGZA; 6, Δn for BGZAY(4) and BGZA.

Fig. 5
Fig. 5

Refractive-index dispersion for BGZA under various temperature circumstances: 1, 25°C; 2, 100°C; 3, 250°C.

Fig. 6
Fig. 6

Temperature dependence of refractive index.

Fig. 7
Fig. 7

Material dispersion curve: A, BGZA; B, BGZAPb(4); C, SiO2.

Fig. 8
Fig. 8

Temperature dependence of zero material dispersion wavelength (λ0) for BGZA glass.

Tables (9)

Tables Icon

Table I Refractive Index of Fluoride Glasses

Tables Icon

Table II Refractive Index of Fluoride Glasses

Tables Icon

Table III Refractive Index of BGZA(4) at Various Temperatures

Tables Icon

Table IV Coefficients of Refractive-Index Dispersion Curves

Tables Icon

Table V Refractivity for Fluoride Compounds11

Tables Icon

Table VI Ionic Radii of Metals

Tables Icon

Table VII Absorption Edge Wavelength of Fluoride Glass

Tables Icon

Table VIII Temperature Dependence and Thermal Expansion Coefficient

Tables Icon

Table IX Zero Material Dispersion Wavelength

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = A λ 4 + B λ 2 + C + D λ 2 + E λ 4 .
M ( λ ) = λ c × d 2 n ( λ ) d λ 2 = 2 c ( 10 A λ 5 + 3 B λ 3 + D λ + 6 E λ 3 ) ,
δ n ( ab ) = J = 1 N | n J ob n J cal | / N ,
d n d T = ( P β ) ( n 2 1 ) ( n 2 + 2 ) / 6 n ,
d n d T absolute = d n d T relative + n · d n air d T ,

Metrics