Abstract

Temperature cycling of highly birefringent optical fibers and preforms has been used to investigate the thermal properties of bow-tie and elliptically clad structures. The thermal hysteresis of the birefringence is shown to be a direct consequence of the thermal history of the fiber or preform and has been related to volume changes in the stress-producing borosilicate sections. Annealing increases the axial stress as well as the stress anisotropy and hence the birefringence. Increases of up to a factor of 2 in the birefringence on suitable thermal treatment indicate a new method for further improvement of high birefringence fibers. The implications of the results in the design, fabrication, and use of such fibers are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, IEEE J. Quantum Electron. 18, 477 (1982).
    [CrossRef]
  2. R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
    [CrossRef]
  3. I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
    [CrossRef]
  4. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
    [CrossRef]
  5. T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
    [CrossRef]
  6. V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pliebel, Appl. Opt. 18, 4080 (1979).
    [CrossRef] [PubMed]
  7. A. J. Barlow, D. N. Payne, in Proceedings, Symposium on Optical Fiber Measurements, Boulder, Colo. (1982).
  8. R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
    [CrossRef]
  9. R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 116.
  10. A. Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946).
    [CrossRef]
  11. T. Katsuyama, K. Ishida, T. Suganuma, Opt. Commun. 25, 193 (1978).
    [CrossRef]

1982

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, IEEE J. Quantum Electron. 18, 477 (1982).
[CrossRef]

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
[CrossRef]

1981

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

1979

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pliebel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
[CrossRef]

1978

T. Katsuyama, K. Ishida, T. Suganuma, Opt. Commun. 25, 193 (1978).
[CrossRef]

1946

A. Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946).
[CrossRef]

Andersson, R. S.

R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
[CrossRef]

Barlow, A. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, IEEE J. Quantum Electron. 18, 477 (1982).
[CrossRef]

A. J. Barlow, D. N. Payne, in Proceedings, Symposium on Optical Fiber Measurements, Boulder, Colo. (1982).

Birch, R. D.

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

Calligaro, R. B.

R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
[CrossRef]

Divino, M. D.

Doremus, R. H.

R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 116.

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Ellem, B. A.

R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
[CrossRef]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Ishida, K.

T. Katsuyama, K. Ishida, T. Suganuma, Opt. Commun. 25, 193 (1978).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Katsuyama, K. Ishida, T. Suganuma, Opt. Commun. 25, 193 (1978).
[CrossRef]

MacChesney, J. B.

I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
[CrossRef]

Matsumura, H.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Payne, D. N.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, IEEE J. Quantum Electron. 18, 477 (1982).
[CrossRef]

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
[CrossRef]

A. J. Barlow, D. N. Payne, in Proceedings, Symposium on Optical Fiber Measurements, Boulder, Colo. (1982).

Pliebel, W.

Presby, H. M.

I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
[CrossRef]

Ramaswamy, V.

Ramskov-Hansen, J. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, IEEE J. Quantum Electron. 18, 477 (1982).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Simpson, S. R.

I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
[CrossRef]

Stolen, R. H.

Suganuma, T.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Katsuyama, K. Ishida, T. Suganuma, Opt. Commun. 25, 193 (1978).
[CrossRef]

Tool, A. Q.

A. Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946).
[CrossRef]

Varnham, M. P.

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

Appl. Opt.

Electron. Lett.

R. B. Calligaro, D. N. Payne, R. S. Andersson, B. A. Ellem, Electron. Lett. 18, 475 (1982).
[CrossRef]

R. D. Birch, D. N. Payne, M. P. Varnham, Electron. Lett. 18, 1036 (1982).
[CrossRef]

I. P. Kaminow, S. R. Simpson, H. M. Presby, J. B. MacChesney, Electron. Lett. 15, 677 (1979).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

IEEE J. Quantum Electron.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, IEEE J. Quantum Electron. 18, 477 (1982).
[CrossRef]

J. Am. Ceram. Soc.

A. Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946).
[CrossRef]

Opt. Commun.

T. Katsuyama, K. Ishida, T. Suganuma, Opt. Commun. 25, 193 (1978).
[CrossRef]

Other

R. H. Doremus, Glass Science (Wiley, New York, 1973), p. 116.

A. J. Barlow, D. N. Payne, in Proceedings, Symposium on Optical Fiber Measurements, Boulder, Colo. (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental arrangement used to monitor the retardance of test fibers as a function of temperature.

Fig. 2
Fig. 2

Micrograph (a) and sketch (b) of the cross-sectional structure of the bow-tie fiber.

Fig. 3
Fig. 3

Micrograph (a) and sketch (b) of the cross-sectional structure of the elliptically clad fiber.

Fig. 4
Fig. 4

Plot of beat length vs temperature for the bow-tie fiber. Curves a and b refer to successive thermal cycles.

Fig. 5
Fig. 5

Plot of beat length vs temperature for the bow-tie fiber. Runs c and d succeed a and b of Fig. 4. Curve c is produced by rapid cooling of the fiber.

Fig. 6
Fig. 6

Plot of beat length vs temperature for the elliptically clad fiber. Curves a and b refer to successive thermal cycles.

Fig. 7
Fig. 7

Plot of beat length vs temperature for the elliptically clad fiber. Runs c and d succeed a and b in Fig. 6. Curve c is produced by rapid cooling of the fiber.

Fig. 8
Fig. 8

Plot of normalized length change (Δl)/l vs temperature for borosilicate glass (after Tool10 reproduced with kind permission from J. Am. Ceram. Soc.).

Fig. 9
Fig. 9

Plots of birefringence vs temperature for the bow-tie and elliptically clad fibers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B = A [ V f V ( T ) ] ,
V ( T ) = V r α υ d T ,
B = A V f ( 1 V r V f α υ d T ) .
B = A V f ( 1 3 V r V f α l d T ) .
L p = λ B = λ A V f ( 1 3 V r V f α l d T ) ,
L p λ A V f ( 1 + 3 V r V f α l d T ) .
L p E ( 1 + F Δ l l ) ,

Metrics