Abstract

The diameter and refractive index of micrometer sized spherical dielectric particles are simultaneously deduced using the wavelength dependence of backscattering data from optically levitated particles. The accuracy of the results is set by experimental errors in the determination of the wavelength of backscatter resonance peaks and the ratio of slopes of specified peaks. At present the refractive index and diameter can be deduced with relative errors of 5 × 10−5. This represents the most accurate determination of absolute size and refractive index yet made by light scattering. A reduction of these errors by an order of magnitude is possible. We assume a priori knowledge of diameter and refractive index with accuracy of 10−1 and 5 × 10−3, respectively.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription