Abstract

This is the second of two papers dealing with the effects of volcanic debris from the eruption of El Chichon on light from the sunlit sky. The polarization of skylight was considered in the first of the two, whereas this one is devoted to skylight intensity. It is shown here that the magnitude of the skylight intensity is modified very significantly from its clear sky value by the volcanic cloud, as is its change with solar depression angle during twilight and its distribution over the sky during the day. Emphasis is on measurements at a wavelength of 0.07 μm. Generally the volcanic cloud produces a diminution of zenith intensity during twilight with a considerable enhancement of intensity over the sky throughout the main part of the day. The solar aureole is not as sharp as it is in normally clear conditions, but the volcanic cloud causes a very diffuse type of aureole which covers a large portion of the sky. The preferential scattering of the longer wavelengths of sunlight, which is made evident by brilliant red and yellow colors in the sunrise period, causes a pronounced change of longwave/shortwave color ratios during twilight from their values in clear atmospheric conditions. The combination of intensity data shown here with polarization data in the previous paper should give a relatively complete picture of the effects of volcanic debris on solar radiation in the atmosphere and be useful in the verification of radiative transfer models of atmospheric turbidity.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Coulson, Appl. Opt. 22, 1036 (1983).
    [CrossRef] [PubMed]
  2. C. Jensen, “Die Himmelsstrahlung,” in Handbuch der Physik, Bd. 19 (Springer, Berlin, 1928), pp. 70–152.
  3. C. Jensen, “Die Polarisation des Himmelslichts,” in Handbuch der Geophysik, Bd. 8 (Berlin, 1942), pp. 527–620.
  4. C. Dorno, “Himmelselligkeit, Himmelspolarisation, und Sonnenintensitat in Davos (1911 bis 1918),” Meteorol. Z. 36, 109, 181 (1919).
  5. A. Cornu, “Observations relatives a la couronne visible actuellement antour du Soleil,” C. R. Acad. Sci. 99, 488 (1884).
  6. F. E. Volz, Appl. Opt. 8, 2505 (1969).
    [CrossRef] [PubMed]
  7. F. E. Volz, J. Geophys. Res. 79, 479 (1974).
    [CrossRef]
  8. F. E. Volz, Science 189, 48 (1975).
    [CrossRef] [PubMed]
  9. F. E. Volz, J. Geophys. Res. 80, 2643 (1975).
    [CrossRef]
  10. G. M. Shah, Tellus 5, 636 (1969).
  11. E. de Bary, PAGEOPH 62, 161 (1965).
    [CrossRef]
  12. E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
    [CrossRef]
  13. K. L. Coulson, Appl. Opt. 19, 3469 (1980).
    [CrossRef] [PubMed]
  14. G. N. Plass, G. W. Kattawar, Appl. Opt. 9, 1122 (1970).
    [CrossRef] [PubMed]
  15. G. N. Plass, G. W. Kattawar, J. Atmos. Sci. 28, 1187 (1971).
    [CrossRef]
  16. J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).
  17. J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A 43, No. 2 (1956).
  18. W. G. Blattner, H. G. Horak, D. G. Collins, M. B. Wells, Appl. Opt. 13, 534 (1974).
    [CrossRef] [PubMed]
  19. M. A. Nazaraliyev, G. V. Rozenberg, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 94 (1977).
  20. J. V. Dave, C. L. Mateer, private communication (1980).
  21. K. L. Coulson, Appl. Opt. 20, 1516 (1981).
    [CrossRef] [PubMed]
  22. J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
    [CrossRef]
  23. F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
    [CrossRef]
  24. F. E. Volz, Appl. Opt. 20, 4172 (1981).
    [CrossRef] [PubMed]

1983 (1)

1981 (2)

1980 (1)

1977 (1)

M. A. Nazaraliyev, G. V. Rozenberg, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 94 (1977).

1975 (2)

F. E. Volz, Science 189, 48 (1975).
[CrossRef] [PubMed]

F. E. Volz, J. Geophys. Res. 80, 2643 (1975).
[CrossRef]

1974 (2)

1971 (1)

G. N. Plass, G. W. Kattawar, J. Atmos. Sci. 28, 1187 (1971).
[CrossRef]

1970 (1)

1969 (2)

1968 (1)

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[CrossRef]

1965 (1)

E. de Bary, PAGEOPH 62, 161 (1965).
[CrossRef]

1962 (1)

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[CrossRef]

1956 (2)

J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A 43, No. 2 (1956).

1952 (1)

E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
[CrossRef]

1919 (1)

C. Dorno, “Himmelselligkeit, Himmelspolarisation, und Sonnenintensitat in Davos (1911 bis 1918),” Meteorol. Z. 36, 109, 181 (1919).

1884 (1)

A. Cornu, “Observations relatives a la couronne visible actuellement antour du Soleil,” C. R. Acad. Sci. 99, 488 (1884).

Ashburn, E. V.

E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
[CrossRef]

Blattner, W. G.

Collins, D. G.

Cornu, A.

A. Cornu, “Observations relatives a la couronne visible actuellement antour du Soleil,” C. R. Acad. Sci. 99, 488 (1884).

Coulson, K. L.

Dave, J. V.

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[CrossRef]

J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A 43, No. 2 (1956).

J. V. Dave, C. L. Mateer, private communication (1980).

de Bary, E.

E. de Bary, PAGEOPH 62, 161 (1965).
[CrossRef]

Dorno, C.

C. Dorno, “Himmelselligkeit, Himmelspolarisation, und Sonnenintensitat in Davos (1911 bis 1918),” Meteorol. Z. 36, 109, 181 (1919).

Goody, R. M.

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[CrossRef]

Horak, H. G.

Jensen, C.

C. Jensen, “Die Polarisation des Himmelslichts,” in Handbuch der Geophysik, Bd. 8 (Berlin, 1942), pp. 527–620.

C. Jensen, “Die Himmelsstrahlung,” in Handbuch der Physik, Bd. 19 (Springer, Berlin, 1928), pp. 70–152.

Kattawar, G. W.

G. N. Plass, G. W. Kattawar, J. Atmos. Sci. 28, 1187 (1971).
[CrossRef]

G. N. Plass, G. W. Kattawar, Appl. Opt. 9, 1122 (1970).
[CrossRef] [PubMed]

Mateer, C. L.

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[CrossRef]

J. V. Dave, C. L. Mateer, private communication (1980).

Nazaraliyev, M. A.

M. A. Nazaraliyev, G. V. Rozenberg, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 94 (1977).

Plass, G. N.

G. N. Plass, G. W. Kattawar, J. Atmos. Sci. 28, 1187 (1971).
[CrossRef]

G. N. Plass, G. W. Kattawar, Appl. Opt. 9, 1122 (1970).
[CrossRef] [PubMed]

Ramanathan, K. R.

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A 43, No. 2 (1956).

Rozenberg, G. V.

M. A. Nazaraliyev, G. V. Rozenberg, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 94 (1977).

Shah, G. M.

G. M. Shah, Tellus 5, 636 (1969).

Volz, F. E.

F. E. Volz, Appl. Opt. 20, 4172 (1981).
[CrossRef] [PubMed]

F. E. Volz, J. Geophys. Res. 80, 2643 (1975).
[CrossRef]

F. E. Volz, Science 189, 48 (1975).
[CrossRef] [PubMed]

F. E. Volz, J. Geophys. Res. 79, 479 (1974).
[CrossRef]

F. E. Volz, Appl. Opt. 8, 2505 (1969).
[CrossRef] [PubMed]

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[CrossRef]

Wells, M. B.

Appl. Opt. (7)

C. R. Acad. Sci. (1)

A. Cornu, “Observations relatives a la couronne visible actuellement antour du Soleil,” C. R. Acad. Sci. 99, 488 (1884).

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

M. A. Nazaraliyev, G. V. Rozenberg, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 94 (1977).

J. Atmos. Sci. (2)

G. N. Plass, G. W. Kattawar, J. Atmos. Sci. 28, 1187 (1971).
[CrossRef]

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[CrossRef]

J. Geophys. Res. (4)

E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
[CrossRef]

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[CrossRef]

F. E. Volz, J. Geophys. Res. 79, 479 (1974).
[CrossRef]

F. E. Volz, J. Geophys. Res. 80, 2643 (1975).
[CrossRef]

Meteorol. Z. (1)

C. Dorno, “Himmelselligkeit, Himmelspolarisation, und Sonnenintensitat in Davos (1911 bis 1918),” Meteorol. Z. 36, 109, 181 (1919).

PAGEOPH (1)

E. de Bary, PAGEOPH 62, 161 (1965).
[CrossRef]

Proc. Indian Acad. Sci. Sect. A (2)

J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A 43, No. 2 (1956).

Science (1)

F. E. Volz, Science 189, 48 (1975).
[CrossRef] [PubMed]

Tellus (1)

G. M. Shah, Tellus 5, 636 (1969).

Other (3)

C. Jensen, “Die Himmelsstrahlung,” in Handbuch der Physik, Bd. 19 (Springer, Berlin, 1928), pp. 70–152.

C. Jensen, “Die Polarisation des Himmelslichts,” in Handbuch der Geophysik, Bd. 8 (Berlin, 1942), pp. 527–620.

J. V. Dave, C. L. Mateer, private communication (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Intensity of skylight as a function of sun elevation at a wavelength of 0.70 μm taken in the zenith direction at the Mauna Loa Observatory on three different days during the stabilized phase of the volcanic cloud. Reference curves for the clear atmosphere as observed at Mauna Loa in 197721 and as observed at an altitude of 1653 m in California by Ashburn12 are included.

Fig. 2
Fig. 2

Ratio of the skylight intensity at the zenith for the observations of Fig. 1 to that for the average of nine clear days in 1977 as a function of sun elevation. The positions of the polarization maxima and minima (see Paper 1) are indicated by × and ○, respectively.

Fig. 3
Fig. 3

Intensity of skylight as a function of sun elevation at a wavelength of 0.70 μm taken in the zenith direction 13 July 1982 compared with that of the average of nine clear days in 1977 and that computed for two different atmospheric models. Computations by Blattner et al.18 are for a Rayleigh atmosphere, and those of Dave and Mateer20 are for a model of the turbid atmopshere with a tenfold increase of particles in the 16–21-km altitude region.

Fig. 4
Fig. 4

Intensity of skylight as a function of sun elevation at a wavelength of 0.70 μm taken in the zenith direction at the Mauna Loa Observatory on three different days during the transitional phase of the volcanic cloud. A reference curve for the clear atmosphere as observed at Mauna Loa in 1977 is included.

Fig. 5
Fig. 5

Ratio of the skylight intensity at the zenith for the observations of Fig. 4 to that for the clear case of Fig. 4 as a function of sun elevation. The positions of the polarization maxima and minima (see Paper 1) are indicated by × and 0, respectively.

Fig. 6
Fig. 6

Distribution of skylight intensity through the plane of the sun's vertical at λ = 0.70 μm as observed at the Mauna Loa Observatory 27 July 1982. The sun elevations at the time of the midpoint of the scans are indicated. A reference curve taken in the clear atmosphere of 20 Jan. 1977 is included.

Fig. 7
Fig. 7

Same as Fig. 6 except for higher sun elevations. The reference curve is for a sun elevation of 51° taken in the clear atmosphere of 10 Feb. 1977.

Fig. 8
Fig. 8

Color ratios for wavelength pairs of 0.70 and 0.32 μm (A) and 0.40 μm (B) as functions of sun elevation for four days of the volcanic cloud compared with those for the average of nine clear days at the Mauna Loa Observatory.

Metrics