Abstract

The application of a general-purpose image-processing computer system to automatic fringe analysis is presented. Three areas of application have been examined where the use of a system based on a random access frame store has enabled a processing algorithm to be developed to suit a specific problem. Furthermore, it has enabled automatic analysis to be performed with complex and noisy data. The applications considered are strain measurement by speckle interferometry, position location in three axes, and fault detection in holographic nondestructive testing. A brief description of each problem is presented, followed by a description of the processing algorithm, results, and timings.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Bernal G, Proc. Soc. Photo-Opt. Instrum. Eng., 126, 143 (1977).
  2. E. Archbold, A. E. Ennos, M. S. Virdee, Proc. Soc. Photo-Opt. Instrum. Eng. 136, 258 (1977).
  3. J. W. C. Gates, M. C. Hutley, R. F. Stevens, Nelex 80, 7–9 Oct 1980, National Engineering Laboratory, East Kilbride, U.K. (1980), paper 2.3.
  4. E. Archbold, in The Engineering Uses of Coherent Optics, E. Robertson, Ed. (Cambridge U.P., London, 1975), pp. 59–72.
  5. G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
    [CrossRef]
  6. W. R. J. Funnell, Appl. Opt. 20, 3245 (1981).
    [CrossRef] [PubMed]
  7. D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
    [CrossRef]
  8. J. H. Brunning et al.Appl. Opt. 13, 2693 (1974).
    [CrossRef]
  9. J. C. Wyant, Appl. Opt. 14, 2622 (1975).
    [CrossRef] [PubMed]
  10. D. T. Moore, Appl. Opt. 17, 3959 (1978).
    [CrossRef] [PubMed]
  11. M. J. Lahart, Appl. Opt. 19, 1033 (1980).
    [CrossRef] [PubMed]

1981 (1)

1980 (2)

M. J. Lahart, Appl. Opt. 19, 1033 (1980).
[CrossRef] [PubMed]

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

1979 (1)

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

1978 (1)

1977 (2)

E. Bernal G, Proc. Soc. Photo-Opt. Instrum. Eng., 126, 143 (1977).

E. Archbold, A. E. Ennos, M. S. Virdee, Proc. Soc. Photo-Opt. Instrum. Eng. 136, 258 (1977).

1975 (1)

1974 (1)

Archbold, E.

E. Archbold, A. E. Ennos, M. S. Virdee, Proc. Soc. Photo-Opt. Instrum. Eng. 136, 258 (1977).

E. Archbold, in The Engineering Uses of Coherent Optics, E. Robertson, Ed. (Cambridge U.P., London, 1975), pp. 59–72.

Bernal G, E.

E. Bernal G, Proc. Soc. Photo-Opt. Instrum. Eng., 126, 143 (1977).

Brunning, J. H.

Ennos, A. E.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

E. Archbold, A. E. Ennos, M. S. Virdee, Proc. Soc. Photo-Opt. Instrum. Eng. 136, 258 (1977).

Funnell, W. R. J.

Gale, B.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Gates, J. W. C.

J. W. C. Gates, M. C. Hutley, R. F. Stevens, Nelex 80, 7–9 Oct 1980, National Engineering Laboratory, East Kilbride, U.K. (1980), paper 2.3.

Hutley, M. C.

J. W. C. Gates, M. C. Hutley, R. F. Stevens, Nelex 80, 7–9 Oct 1980, National Engineering Laboratory, East Kilbride, U.K. (1980), paper 2.3.

Kaufmann, G. H.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Lahart, M. J.

Madsen, V. P.

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

Moore, D. T.

Pugh, D. J.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Stevens, R. F.

J. W. C. Gates, M. C. Hutley, R. F. Stevens, Nelex 80, 7–9 Oct 1980, National Engineering Laboratory, East Kilbride, U.K. (1980), paper 2.3.

Tichenor, D. A.

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

Virdee, M. S.

E. Archbold, A. E. Ennos, M. S. Virdee, Proc. Soc. Photo-Opt. Instrum. Eng. 136, 258 (1977).

Wyant, J. C.

Appl. Opt. (5)

J. Phys. E (1)

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, J. Phys. E 13, 579 (1980).
[CrossRef]

Opt. Eng. (1)

D. A. Tichenor, V. P. Madsen, Opt. Eng. 18, 469 (1979).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

E. Bernal G, Proc. Soc. Photo-Opt. Instrum. Eng., 126, 143 (1977).

E. Archbold, A. E. Ennos, M. S. Virdee, Proc. Soc. Photo-Opt. Instrum. Eng. 136, 258 (1977).

Other (2)

J. W. C. Gates, M. C. Hutley, R. F. Stevens, Nelex 80, 7–9 Oct 1980, National Engineering Laboratory, East Kilbride, U.K. (1980), paper 2.3.

E. Archbold, in The Engineering Uses of Coherent Optics, E. Robertson, Ed. (Cambridge U.P., London, 1975), pp. 59–72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Image-processing computer system.

Fig. 2
Fig. 2

Strain measurement by double-exposure speckle photography.

Fig. 3
Fig. 3

Analysis sequence of speckle interferogram.

Fig. 4
Fig. 4

Results of analysis of selected speckle interferograms.

Fig. 5
Fig. 5

Three coordinate space calibration interferometer.

Fig. 6
Fig. 6

Relationship between the interferogram and dx, dy, dz.

Fig. 7
Fig. 7

Relationship between fringe peak position r and fringe number N.

Fig. 8
Fig. 8

Results of analysis of circular fringe interferogram from (a) computed data, (b) Michelson interferometer, (c) three-coordinate position interferometer.

Fig. 9
Fig. 9

Processing sequence for three-coordinate position interferogram.

Fig. 10
Fig. 10

Holographic nondestructive testing (HNDT) of cold plates.

Fig. 11
Fig. 11

Processing sequence for analysis of HNDT interferogram.

Fig. 12
Fig. 12

Results (a) and (b) of analysis of selected HNDT interferograms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = 2 + 2 cos { π / λ ( x 2 + y 2 ) ( 1 / Z o - 1 / Z c ) - 2 x ( X o / Z o - X c / Z c ) - 2 y ( Y o / Z o - Y c / Z c ) } .
I ( x , y ) = 2 + 2 cos { [ π / ( λ Z o Z c ) ] [ ( x 2 + y 2 ) d Z + 2 Z o ( x d x + y d Y ) ] } .
I ( r ) = 2 + 2 cos { [ π / ( λ Z o Z c ) ] ( r 2 d Z + 2 r Z o d R ) } .
N = ( r 2 d Z + 2 r Z o d R ) / ( λ Z o Z c ) ,
d N / d r = [ 2 r d Z / ( λ Z o Z c ) ] + [ 2 d R / ( λ Z c ) ] .
r 2 = x 2 + y 2 .
For values of d z from 0 - 600 μ m , δ = ± 2.4 μ m , for values of d x , d y from 0 - 50 μ m , δ = ± 0.2 μ m .

Metrics