Abstract

The digital heterodyne interferometer has been equipped to simultaneously measure and record phase at 64 discrete locations on a single beam. The measurements are obtained at 10-μsec time intervals and have a resolution in phase of 1/500 of a wave rms and a full scale accuracy of 1/100 of a wave rms. Associated with each phase detector is a dedicated data recording system 16 bits wide and 4096 words deep. Additionally, the system records simultaneously the rigid body motions of the interferometer optics, allowing the post priori removal of the corrupting motions of the interferometer optics. This instrument was used to obtain measurements of the optical quality of the media of a transverse-flow electron beam-pumped laser simulator.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Massie, J. Hartlove, D. Jungwirth, J. Morris, Appl. Opt. 20, 2372 (1981).
    [CrossRef] [PubMed]
  2. N. A. Massie, Appl. Opt. 19, 154 (1980).
    [CrossRef] [PubMed]
  3. N. A. Massie, R. D. Nelson, S. Holly, Appl. Opt. 18, 1797 (1979).
    [CrossRef] [PubMed]
  4. N. A. Massie, J. S. Hartlove, Proc. Soc. Photo-Opt. Instrum. Eng. 179, 98 (1979).
  5. N. A. Massie, “Heterodyne Interferometry,” in Optical Interferograms—Reduction and Interpretation, A. H. Guenter, D. H. Liebenbert, Eds., ASTM STP 666 (American Society for Testing and Materials, Philadelphia, 1978).
    [CrossRef]
  6. F. M. Gardner, Phase Lock Techniques (Wiley, New York, 1979).

1981 (1)

1980 (1)

1979 (2)

N. A. Massie, R. D. Nelson, S. Holly, Appl. Opt. 18, 1797 (1979).
[CrossRef] [PubMed]

N. A. Massie, J. S. Hartlove, Proc. Soc. Photo-Opt. Instrum. Eng. 179, 98 (1979).

Gardner, F. M.

F. M. Gardner, Phase Lock Techniques (Wiley, New York, 1979).

Hartlove, J.

Hartlove, J. S.

N. A. Massie, J. S. Hartlove, Proc. Soc. Photo-Opt. Instrum. Eng. 179, 98 (1979).

Holly, S.

Jungwirth, D.

Massie, N. A.

N. A. Massie, J. Hartlove, D. Jungwirth, J. Morris, Appl. Opt. 20, 2372 (1981).
[CrossRef] [PubMed]

N. A. Massie, Appl. Opt. 19, 154 (1980).
[CrossRef] [PubMed]

N. A. Massie, R. D. Nelson, S. Holly, Appl. Opt. 18, 1797 (1979).
[CrossRef] [PubMed]

N. A. Massie, J. S. Hartlove, Proc. Soc. Photo-Opt. Instrum. Eng. 179, 98 (1979).

N. A. Massie, “Heterodyne Interferometry,” in Optical Interferograms—Reduction and Interpretation, A. H. Guenter, D. H. Liebenbert, Eds., ASTM STP 666 (American Society for Testing and Materials, Philadelphia, 1978).
[CrossRef]

Morris, J.

Nelson, R. D.

Appl. Opt. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. A. Massie, J. S. Hartlove, Proc. Soc. Photo-Opt. Instrum. Eng. 179, 98 (1979).

Other (2)

N. A. Massie, “Heterodyne Interferometry,” in Optical Interferograms—Reduction and Interpretation, A. H. Guenter, D. H. Liebenbert, Eds., ASTM STP 666 (American Society for Testing and Materials, Philadelphia, 1978).
[CrossRef]

F. M. Gardner, Phase Lock Techniques (Wiley, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Simplified Twymann-Green heterodyne interferometer.

Fig. 2
Fig. 2

Digital heterodyne interferometer and data acquisition system as set up at Poseidon Research.

Fig. 3
Fig. 3

Transfer functions for various phase detection techniques (see text for explanation).

Fig. 4
Fig. 4

Layout of optical fiber pattern.

Fig. 5
Fig. 5

DHI and fiber-optic receiver on table.

Fig. 6
Fig. 6

Interferometer test beam/flow area (see also Figs. 14 and 15).

Fig. 7
Fig. 7

Fiber-optic receiver faceplate.

Fig. 8
Fig. 8

From left to right: transient phase recorder module; extended range analog phase detection module; fiber-optic receiver module.

Fig. 9
Fig. 9

Assembled data acquisition system.

Fig. 10
Fig. 10

Block logic diagram of transient phase recording module.

Fig. 11
Fig. 11

Flow-field/interferometer test arm schematic (see also Fig. 6).

Fig. 12
Fig. 12

Spatial rms with media tip and tilt removed. Test arm return mirror is at 10 cm.

Fig. 13
Fig. 13

Spatial rms with media tip and tilt removed. Test arm return mirror is at 200 cm.

Fig. 14
Fig. 14

Measurements of tip and tilt in mirror rocking experiment.

Fig. 15
Fig. 15

Measurements showing performance of tip and tilt removal system.

Fig. 16
Fig. 16

The rms(t) for a 90-msectime around the frame strike.

Fig. 17
Fig. 17

OPD(x,y) before frame strike.

Fig. 18
Fig. 18

OPD(x,y) after frame strike.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

MOQ ( t ) = { [ ϕ g ( x , y , t ) - S ( x , y , t ) ] 2 d a } 1 / 2 ,
i ( x , y , t ) = { ξ 0 cos ( ω 0 t ) + ξ 1 cos [ ω 1 t + ϕ ( x , y , t ) ] } 2 ,
i ( x , y , t ) = i 0 cos [ Δ ω t + ϕ ( x , y , t ) ] ,
ϕ ( x , y , t ) = Σ ( x , y , t ) + p ( t ) ,
ϕ ( x , y , t ) = [ Σ ( x , y , t ) - Σ ( x r , y r , t ) ] .
ϕ ( x , y , t ) = ϕ g ( x , y , t ) + ϕ 0 ( x , y ) + a m ( t ) x + b m ( t ) y + p g ( t ) + a g ( t ) x + b g ( y ) y .
δ t T = 1 2 π SNR ,
Δ ϕ ¯ 2 = 1 L - L / 2 L / 2 ( ϕ t x L ) 2 d x ,
i = [ ξ 0 cos ( ω 0 t ) + ξ 1 cos ( ω 1 t + ϕ 1 ) + r ξ 1 cos ( ω 1 t + β ) ] 2 ,
i ξ 0 ξ 1 cos ( Δ ω t + ϕ ) + r ξ 0 ξ 1 cos ( Δ ω t + β ) .
tan γ = r sin δ 1 + r cos δ ,
γ r sin δ .
δ = a + b x + c y .
δ γ = r [ sin ( a + b x + c y ) - sin ( a + b x + c y ) ] ,
r = 2 r sin ( a + b x + c y ) sin ( δ a ) .
δ ϕ = ( 2 β / λ ) 0 L δ T ( z ) d z T ,

Metrics