Abstract

In CARS and other optical processes used for diagnostics the signal of interest generally varies over the parameter range of interest by a magnitude well in excess of the linear dynamic range of typical optical multichannel detectors. To overcome this limitation in applications where rapid temporal fluctuations occur, the signal is generally split and attenuated by external optics creating multiple images of differing intensities on the detector. The strongest nonsaturated image is then used for data analysis. In this paper a simple single-component optical splitter is described which can be placed inside the spectrograph directly in front of the optical multichannel detector. It is simple to align and particularly convenient for spectrographs in which the signal is introduced through fiber optics.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Drake, M. Lapp, C. M. Penney, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 631.
  2. A. C. Eckbreth, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1471.
    [CrossRef]
  3. A. C. Eckbreth, Combust. Flame 39, 133 (1980); A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, in Procedings, Nineteenth JANNAF Combustion Symposium (Chemical Propulsion Information Agency, Baltimore, 1982), p. 109; A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, P. A. Tellex, AIAA Paper No. 83-1294 (1983).
    [CrossRef]
  4. G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
    [CrossRef]
  5. I. A. Stenhouse, D. R. Williams, J. B. Cole, M. D. Swords, Appl. Opt. 18, 3819 (1979).
    [PubMed]
  6. M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
    [CrossRef]
  7. D. A. Greenhalgh, F. M. Porter, W. A. England, Combust. Flame 49, 171 (1983).
    [CrossRef]
  8. L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 609.
  9. D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981).
    [CrossRef] [PubMed]
  10. A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
    [CrossRef]
  11. W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
    [CrossRef]
  12. R. J. Hall, Opt. Eng.22, (1983), in press.
    [CrossRef]
  13. L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, AIAA Paper No. 82-0240 (1982).
  14. oslo Program, Sinclair Optics, Pittsford, N.Y. 14534.

1983 (1)

D. A. Greenhalgh, F. M. Porter, W. A. England, Combust. Flame 49, 171 (1983).
[CrossRef]

1981 (2)

D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981).
[CrossRef] [PubMed]

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

1980 (3)

A. C. Eckbreth, Combust. Flame 39, 133 (1980); A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, in Procedings, Nineteenth JANNAF Combustion Symposium (Chemical Propulsion Information Agency, Baltimore, 1982), p. 109; A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, P. A. Tellex, AIAA Paper No. 83-1294 (1983).
[CrossRef]

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

1979 (1)

1976 (1)

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Bradley, R. P.

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

Cole, J. B.

Drake, M. C.

M. C. Drake, M. Lapp, C. M. Penney, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 631.

Eckbreth, A. C.

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

A. C. Eckbreth, Combust. Flame 39, 133 (1980); A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, in Procedings, Nineteenth JANNAF Combustion Symposium (Chemical Propulsion Information Agency, Baltimore, 1982), p. 109; A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, P. A. Tellex, AIAA Paper No. 83-1294 (1983).
[CrossRef]

A. C. Eckbreth, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1471.
[CrossRef]

England, W. A.

D. A. Greenhalgh, F. M. Porter, W. A. England, Combust. Flame 49, 171 (1983).
[CrossRef]

Farrow, R. L.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 609.

Goss, L. P.

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, AIAA Paper No. 82-0240 (1982).

Greenhalgh, D. A.

D. A. Greenhalgh, F. M. Porter, W. A. England, Combust. Flame 49, 171 (1983).
[CrossRef]

Hall, R. J.

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

R. J. Hall, Opt. Eng.22, (1983), in press.
[CrossRef]

Johnston, S. C.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 609.

Klick, D.

Lapp, M.

M. C. Drake, M. Lapp, C. M. Penney, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 631.

Marko, K. A.

Mattern, P. L.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 609.

Moya, F.

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Pealat, M.

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Penney, C. M.

M. C. Drake, M. Lapp, C. M. Penney, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 631.

Porter, F. M.

D. A. Greenhalgh, F. M. Porter, W. A. England, Combust. Flame 49, 171 (1983).
[CrossRef]

Rahn, L. A.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 609.

Rimai, L.

Roh, W. B.

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Roquemore, W. M.

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

Schreiber, P. W.

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, AIAA Paper No. 82-0240 (1982).

Stenhouse, I. A.

Switzer, G. L.

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, AIAA Paper No. 82-0240 (1982).

Swords, M. D.

Taran, J. P.

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Taran, J. P. E.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Trump, D. D.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, AIAA Paper No. 82-0240 (1982).

Williams, D. R.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. B. Roh, P. W. Schreiber, J. P. E. Taran, Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Combust. Flame (2)

D. A. Greenhalgh, F. M. Porter, W. A. England, Combust. Flame 49, 171 (1983).
[CrossRef]

A. C. Eckbreth, Combust. Flame 39, 133 (1980); A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, in Procedings, Nineteenth JANNAF Combustion Symposium (Chemical Propulsion Information Agency, Baltimore, 1982), p. 109; A. C. Eckbreth, J. H. Stufflebeam, G. M. Dobbs, P. A. Tellex, AIAA Paper No. 83-1294 (1983).
[CrossRef]

Combust. Sci. Technol. (1)

A. C. Eckbreth, R. J. Hall, Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. Energy (1)

G. L. Switzer, L. P. Goss, W. M. Roquemore, R. P. Bradley, P. W. Schreiber, W. B. Roh, J. Energy 4, 209 (1980).
[CrossRef]

Opt. Laser Technol. (1)

M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980).
[CrossRef]

Other (6)

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 609.

M. C. Drake, M. Lapp, C. M. Penney, Temperature (American Institute of Physics, New York, 1982), Vol. 5, Part 1, p. 631.

A. C. Eckbreth, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1471.
[CrossRef]

R. J. Hall, Opt. Eng.22, (1983), in press.
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, AIAA Paper No. 82-0240 (1982).

oslo Program, Sinclair Optics, Pittsford, N.Y. 14534.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Temperature variation of the CARS peak spectral intensity and spectrally integrated signal at a constant pressure of 1 atm.

Fig. 2
Fig. 2

Single-component optical splitter concept.

Fig. 3
Fig. 3

Illustration of axial δ and lateral Δ focal displacements of a converging ray bundle through an angle optical slab.

Fig. 4
Fig. 4

Geometric path difference between the primary and secondary images. The path-length difference is (OA + AB + BT) − OT.

Fig. 5
Fig. 5

Variation of path-length difference and axial focal displacement of the secondary relative to primary image δ(2t) with splitter angle. The superscript t refers to the tangential marginal rays, s to the sagittal marginal rays. All values are normalized by the splitter thickness t.

Fig. 6
Fig. 6

Geometry employed to derive the axial and lateral focal displacements of the out-of-plane or sagittal marginal rays (smr).

Fig. 7
Fig. 7

Lateral focal displacement of the tangential Δt and sagittal Δs marginal rays relative to the central axial ray Δ as a function of splitter angle for various ray cone half-angles.

Fig. 8
Fig. 8

Detailed ray tracing for splitter at the angle (40.5°), where the primary and secondary foci reside in the same transverse plane.

Fig. 9
Fig. 9

Ray-trace scatter diagram displaying the aberrations introduced by the splitter into the direct and secondary foci.

Fig. 10
Fig. 10

Splitter performance with the CARS spectrum of ambient nitrogen. The top trace shows the total optical multichannel detector display with the primary and greatly attenuated secondary images. On expanded display scales, the primary (middle) and secondary (bottom) spectral images are shown. The dispersion was ~0.58 cm−1/datapoint number.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ t = t sin α 2 [ 2 + tan ϕ ( 1 tan α - 1 tan β ) + tan ϕ ( 1 tan α + 1 tan β ) ] ,
pld = 2 t cos γ ( 1 - cos 2 α n ) ,
δ s = t sin α ( 1 - sin α cos β n 2 - 1 + cos 2 β sin 2 α ) .
Δ t = t cos α 2 { 2 - tan ϕ ( tan α - tan β ) - tan ϕ ( tan α + tan β ) } , Δ s = t sin α { 1 tan α - cos α cos β n 2 - 1 + cos 2 β sin 2 α } .
Δ = t sin α ( 1 tan α - tan γ ) .
S = 2 t sin α tan γ .

Metrics