Abstract

A method of stabilizing the phase conjugate wave front generated by BSO crystal is proposed. First the fluctuation properties are examined by means of cross-correlation and power-spectrum analysis. Then a negative feedback loop, which includes the field applied to the crystal and the conjugate wave-front detection at a small part of the crystal, is constructed to stabilize the intensity of the desired wave front. The results show almost complete elimination of the fluctuation.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sato, Y. Nagura, O. Ikeda, Appl. Opt. 21, 1778 (1982).
    [CrossRef] [PubMed]
  2. D. M. Bloom, P. F. Liao, N. P. Economow, Opt. Lett. 2, 58 (1978).
    [CrossRef] [PubMed]
  3. J. P. Huignard, J. P. Herriau, Appl. Opt. 17, 2671 (1978).
    [CrossRef] [PubMed]
  4. T. Sato, T. Suzuki, P. J. Bryanston-Cross, O. Ikeda, T. Hatsuzawa, Appl. Opt. 22, 815 (1983).
    [CrossRef] [PubMed]
  5. J. P. Huignard et al., Opt. Lett. 5, 102 (1980).
    [CrossRef] [PubMed]
  6. J. G. Ziegler, N. B. Nichols, ASME Trans. 64, 759 (1942).

1983 (1)

1982 (1)

1980 (1)

1978 (2)

1942 (1)

J. G. Ziegler, N. B. Nichols, ASME Trans. 64, 759 (1942).

Bloom, D. M.

Bryanston-Cross, P. J.

Economow, N. P.

Hatsuzawa, T.

Herriau, J. P.

Huignard, J. P.

Ikeda, O.

Liao, P. F.

Nagura, Y.

Nichols, N. B.

J. G. Ziegler, N. B. Nichols, ASME Trans. 64, 759 (1942).

Sato, T.

Suzuki, T.

Ziegler, J. G.

J. G. Ziegler, N. B. Nichols, ASME Trans. 64, 759 (1942).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fluctuation of the phase conjugate wave front: (a) typical record of the output intensity of BSO phase conjugator; (b) power spectrum of the record.

Fig. 2
Fig. 2

Relation between two intensities detected at different spots. Cross-correlation and the result of subtracting the two signals are shown.

Fig. 3
Fig. 3

Schematic construction of the stabilization system.

Fig. 4
Fig. 4

System block diagram of the feedback loop.

Fig. 5
Fig. 5

Experimental results: (a) typical record of the output after stabilization; (b) power spectrum of the stabilized output.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ = A E 2 1 + B E 2 ,
Δ ρ = 2 A E 0 2 ( 1 + B E 0 2 ) 2 Δ E = K Δ E ,
G BSO ( s ) = exp ( - s L ) 1 + s T B ,
G c ( s ) = K c ( 1 + 1 s T c ) ,
G ( s ) = I ( s ) R ( s ) = K v K f exp ( - s L ) ( 1 + T c s ) T c T B s 2 + [ 1 + K f K v K c exp ( - s L ) ] T c s + K f K v K c exp ( - s L ) .

Metrics