Abstract

Laser-excited fluorescence of the CN radical was obtained using various discrete prism selected lines of krypton and argon-ion lasers. The source of hot CN is a slightly rich atmospheric pressure CH4/N2O premixed flame diluted with N2. The flame is placed within the extended cavity of the ion lasers to take advantage of much higher light intensities. Both B2+X2+ and B2+A2Π transitions of CN have been pumped. The Kr+ laser lines, 6764, 6471, 5309, 4680, 4154, 4131, and 3564 Å, all pump CN. The 4545-Å line of the Ar+ laser also pumps CN. Vibrational and rotational assignments have been made. Detection of CN in a burning propellant sample has been accomplished by this technique.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, in Proceedings, First International Specialists Meeting of the Combustion Institute, Bordeaux, France, Vol. 2 (Combustion Institute, Pittsburgh, 1981), p. 551.
  2. J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
    [CrossRef]
  3. W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
    [CrossRef]
  4. P. F. Jessen, A. G. Gaydon, in Proceedings, Twelfth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1969), p. 481.
    [CrossRef]
  5. P. A. Bonczyk, J. A. Shirley, Combust. Flame 34, 253 (1979); J. F. Verdieck, P. A. Bonczyk, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
    [CrossRef]
  6. R. A. Beyer, M. A. DeWilde, Rev. Sci. Instrum. 53, 103 (1982).
    [CrossRef]
  7. A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
    [CrossRef]
  8. R. Engleman, J. Mol. Spectrosc. 49, 106 (1974).
    [CrossRef]
  9. W. B. Bridges, A. N. Chester, Appl. Opt. 4, 573 (1965).
    [CrossRef]

1983

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
[CrossRef]

1982

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

R. A. Beyer, M. A. DeWilde, Rev. Sci. Instrum. 53, 103 (1982).
[CrossRef]

1980

A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
[CrossRef]

1979

P. A. Bonczyk, J. A. Shirley, Combust. Flame 34, 253 (1979); J. F. Verdieck, P. A. Bonczyk, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

1974

R. Engleman, J. Mol. Spectrosc. 49, 106 (1974).
[CrossRef]

1965

Anderson, W. R.

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
[CrossRef]

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

Beyer, R. A.

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
[CrossRef]

R. A. Beyer, M. A. DeWilde, Rev. Sci. Instrum. 53, 103 (1982).
[CrossRef]

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, in Proceedings, First International Specialists Meeting of the Combustion Institute, Bordeaux, France, Vol. 2 (Combustion Institute, Pittsburgh, 1981), p. 551.

Bonczyk, P. A.

P. A. Bonczyk, J. A. Shirley, Combust. Flame 34, 253 (1979); J. F. Verdieck, P. A. Bonczyk, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

Bridges, W. B.

Chester, A. N.

Coxon, J. A.

A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
[CrossRef]

DeWilde, M. A.

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

R. A. Beyer, M. A. DeWilde, Rev. Sci. Instrum. 53, 103 (1982).
[CrossRef]

Engleman, R.

R. Engleman, J. Mol. Spectrosc. 49, 106 (1974).
[CrossRef]

Field, R. W.

A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
[CrossRef]

Gaydon, A. G.

P. F. Jessen, A. G. Gaydon, in Proceedings, Twelfth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1969), p. 481.
[CrossRef]

Jessen, P. F.

P. F. Jessen, A. G. Gaydon, in Proceedings, Twelfth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1969), p. 481.
[CrossRef]

Kotlar, A. J.

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
[CrossRef]

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
[CrossRef]

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, in Proceedings, First International Specialists Meeting of the Combustion Institute, Bordeaux, France, Vol. 2 (Combustion Institute, Pittsburgh, 1981), p. 551.

Shirley, J. A.

P. A. Bonczyk, J. A. Shirley, Combust. Flame 34, 253 (1979); J. F. Verdieck, P. A. Bonczyk, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

Steinfeld, J. I.

A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
[CrossRef]

Vanderhoff, J. A.

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
[CrossRef]

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, in Proceedings, First International Specialists Meeting of the Combustion Institute, Bordeaux, France, Vol. 2 (Combustion Institute, Pittsburgh, 1981), p. 551.

Appl. Opt.

Combust. Flame

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, W. R. Anderson, Combust. Flame 49, 197 (1983).
[CrossRef]

P. A. Bonczyk, J. A. Shirley, Combust. Flame 34, 253 (1979); J. F. Verdieck, P. A. Bonczyk, in Proceedings, Eighteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

J. Chem. Phys.

W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. DeWilde, R. A. Beyer, J. Chem. Phys. 77, 1677 (1982).
[CrossRef]

J. Mol. Spectrosc.

A. J. Kotlar, R. W. Field, J. I. Steinfeld, J. A. Coxon, J. Mol. Spectrosc. 80, 86 (1980).
[CrossRef]

R. Engleman, J. Mol. Spectrosc. 49, 106 (1974).
[CrossRef]

Rev. Sci. Instrum.

R. A. Beyer, M. A. DeWilde, Rev. Sci. Instrum. 53, 103 (1982).
[CrossRef]

Other

P. F. Jessen, A. G. Gaydon, in Proceedings, Twelfth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1969), p. 481.
[CrossRef]

J. A. Vanderhoff, R. A. Beyer, A. J. Kotlar, in Proceedings, First International Specialists Meeting of the Combustion Institute, Bordeaux, France, Vol. 2 (Combustion Institute, Pittsburgh, 1981), p. 551.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of raised knife-edge burner. Two small channels for flowing N2 keep the flame from wrapping around the edges.

Fig. 2
Fig. 2

Experimental apparatus used for fluorescence measurements.

Fig. 3
Fig. 3

Low-resolution fluorescence and emission spectra of CN. The lower trace is the flame emission for the Δv = 0 B2+X2+ system of CN. The other spectra are laser-excited fluorescence (the flame emission has been subtracted). The numbers to the right of each spectrum represent the laser excitation wavelength in angstroms. The relative height of the different fluorescence spectra does not infer intensities that can be compared since the laser power, as well as the data accumulation time, is different in each case.

Fig. 4
Fig. 4

Flame emission and fluorescence spectra of CN obtained from a propellant sample burning in air.

Tables (1)

Tables Icon

Table I Ar+ and Kr+ Laser Lines That Pump CN and Their Pumping Transitions

Metrics