Abstract

It has been shown [ Appl. Opt. 22, 0000 ( 1983)] that good quality stripe dielectric waveguides can be made by silver ion-exchange in glass if the diffusion mask is of alumina, made by anodization of an aluminum thin film. In this paper we present results of an experimental investigation of directional couplers, waveguide bends, and guide attenuation in waveguides of this type. Directional coupler transfer lengths are found to be in good agreement with theoretical prediction; bends behave as expected according to an approximate theory, and attenuation is found to be low (2dB/cm for a guide width of 2 μm). The optimum radius for a 2-μm wide monomode guide is found to be ~500 μm.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, Appl. Opt. 22, 1923 (1983).
    [CrossRef] [PubMed]
  2. L. Holland, The Properties of Glass Surfaces (Chapman & Hall, London, 1964).
  3. S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.
  4. M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
    [CrossRef]
  5. M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
    [CrossRef]
  6. R. G. Walker, “The Design of Ring-Resonators for Integrated Optics Using Silver Ion-Exchanged Waveguides,” Ph.D. Thesis, U. Glasgow (1981).
  7. E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).
  8. E. G. Newmann, H. D. Rudolf, IEEE Trans. Microwave Theory Tech. MTT-23, 142 (1975).
    [CrossRef]
  9. W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
    [CrossRef]
  10. K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
    [CrossRef]

1983 (1)

1978 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

1977 (1)

K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
[CrossRef]

1976 (1)

M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
[CrossRef]

1975 (2)

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

E. G. Newmann, H. D. Rudolf, IEEE Trans. Microwave Theory Tech. MTT-23, 142 (1975).
[CrossRef]

1969 (1)

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Harris, J. H.

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

Heiblum, M.

M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
[CrossRef]

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

Holland, L.

L. Holland, The Properties of Glass Surfaces (Chapman & Hall, London, 1964).

Marcatili, E. A. J.

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Miller, S. E.

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Newmann, E. G.

E. G. Newmann, H. D. Rudolf, IEEE Trans. Microwave Theory Tech. MTT-23, 142 (1975).
[CrossRef]

Petermann, K.

K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
[CrossRef]

Pinner, R.

S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Rudolf, H. D.

E. G. Newmann, H. D. Rudolf, IEEE Trans. Microwave Theory Tech. MTT-23, 142 (1975).
[CrossRef]

Sammut, R.A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Walker, R. G.

R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, Appl. Opt. 22, 1923 (1983).
[CrossRef] [PubMed]

R. G. Walker, “The Design of Ring-Resonators for Integrated Optics Using Silver Ion-Exchanged Waveguides,” Ph.D. Thesis, U. Glasgow (1981).

Wernick, S.

S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.

Wilkinson, C. D. W.

Wilkinson, J. A. H.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

IEE J. Microwave Opt. Acoust. (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, R.A. Sammut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

E. G. Newmann, H. D. Rudolf, IEEE Trans. Microwave Theory Tech. MTT-23, 142 (1975).
[CrossRef]

Opt. Quantum Electron. (1)

K. Petermann, Opt. Quantum Electron. 9, 167 (1977).
[CrossRef]

Other (3)

R. G. Walker, “The Design of Ring-Resonators for Integrated Optics Using Silver Ion-Exchanged Waveguides,” Ph.D. Thesis, U. Glasgow (1981).

L. Holland, The Properties of Glass Surfaces (Chapman & Hall, London, 1964).

S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Effective index (n e ) plotted against diffusion time for postbaked slab waveguides. Computed curves and experimental points.

Fig. 2
Fig. 2

Typical experimental plots of guided light intensity vs distance for ion-exchanged stripe waveguides (short postbake).

Fig. 3
Fig. 3

Experimental graph of attenuation factor α L vs reciprocal width showing the effect of width and postbake time.

Fig. 4
Fig. 4

Photomicographs of scattered light from directional coupler output arms showing (a) power splitting (I2/I1 ≃ −0.9 dB) and (b) considerable power transfer (I2/I1 ≃ +5 dB).

Fig. 5
Fig. 5

Computed theoretical graph of transfer length vs guide width, with guide inner edge separation c and diffusion time fixed.

Fig. 6
Fig. 6

Computed transfer length vs slab effective index (indicating diffusion time) for two typical sets of coupler dimensions.

Fig. 7
Fig. 7

Photomicrographs of surface scatter from curved waveguides (width 2 μm, n e = 1.5295), R c estimated at 135 μm: (a) simultaneous excitation; (b) R = 150 μm; (c) R = 125 μm, and (d) R = 100 μm.

Fig. 8
Fig. 8

Experimental graph of R c (reciprocal scale) vs n e .

Fig. 9
Fig. 9

As Fig. 8 but including results after postbaking.

Tables (2)

Tables Icon

Table I Comparison of Measured and Computed Transfer Lengths for Experimental Directional Couplers; Slab n e = 1.5253

Tables Icon

Table II Results for Directional Couplers; Slab n e = 1.5185

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L = λ 0 2 ( n e s - n e a ) ,
I 2 I 1 = sin 2 ( K s ) cos 2 ( K s ) = tan 2 ( K s ) ,
K s = m π ± tan - 1 I 2 I 1 : m = 0 , 1 , 2 ,
v p ( ρ ) = v p o ρ R and n e ( ρ ) = n e o R ρ ,
C = ρ c - R = R ( n e o n s - 1 ) .
α c - ψ y 2 d y · c ψ x 2 d x - ψ y 2 d y - ψ x 2 d x ,
α c 1 ξ exp ( - 2 ξ C ) .
Γ c ( R ) = K 1 ξ exp ( - 2 ξ C ) ,
1 R c = 2 n s · 1 ln [ K 1 ξ Γ c ( R c ) ] · ( n e - n s ) .
Γ = Γ L + Γ c = π d L 10 4 R + K exp [ - 2 ξ ( n e n s - 1 ) R ] ,
R 0 = 1 2 ξ ( n e n s - 1 ) · ln [ 2 K ξ ( n e n s - 1 ) · 10 4 π α L ] .
Δ P P = Q R 2 ,

Metrics