Abstract

This paper reports a method for measuring flow velocity in a microscopic region using a transmission grating. The flow velocity is determined from the measurement of moving particle images on a transmission grating placed in front of a photodetector. These images, formed by a microscopic objective, correspond to particles moving in a flow. The method is used to measure the spatial distributions of the flow velocity in small glass tubes and to compare some of the results with comparable data obtained with differential laser Doppler velocimetry. The resultant distributions are compared with the theoretical flow distributions obtained using the flow rates through the tubes. The results demonstrate that the transmission grating method is useful for measurements of the flow velocity in small probe volumes.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gaster, J. Fluid Mech. 20, 183 (1964).
    [CrossRef]
  2. H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
    [CrossRef]
  3. J. T. Ator, Appl. Opt. 5, 1325 (1966).
    [CrossRef] [PubMed]
  4. M. Naito, Y. Ohkami, A. Kobayashi, J. Soc. Instrum. Control Eng. 7, 761 (1968), in Japanese.
  5. E. A. Ballik, J. H. C. Chan, Appl. Opt. 12, 2607 (1973).
    [CrossRef] [PubMed]
  6. T. Ushizaka, T. Asakura, Jpn. J. Opt. 8, 157 (1979), in Japanese.
  7. T. Ushizaka, T. Asakura, Rev. Laser Eng. 8, 496 (1980), in Japanese.
    [CrossRef]
  8. Y. Itakura, A. Sugimura, S. Tsutsumi, Appl. Opt. 20, 2819 (1981).
    [CrossRef] [PubMed]
  9. A. Hayashi, Y. Kitagawa, Appl. Opt. 21, 1394 (1982).
    [CrossRef] [PubMed]
  10. Y. Aizu, T. Ushizaka, T. Asakura, Oyo Butsuri 51, 860 (1982), in Japanese.
  11. T. Ushizaka, H. Mishina, T. Asakura, Oyo Butsuri 46, 781 (1977), in Japanese.

1982 (2)

Y. Aizu, T. Ushizaka, T. Asakura, Oyo Butsuri 51, 860 (1982), in Japanese.

A. Hayashi, Y. Kitagawa, Appl. Opt. 21, 1394 (1982).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

T. Ushizaka, T. Asakura, Rev. Laser Eng. 8, 496 (1980), in Japanese.
[CrossRef]

1979 (1)

T. Ushizaka, T. Asakura, Jpn. J. Opt. 8, 157 (1979), in Japanese.

1977 (1)

T. Ushizaka, H. Mishina, T. Asakura, Oyo Butsuri 46, 781 (1977), in Japanese.

1973 (1)

1968 (1)

M. Naito, Y. Ohkami, A. Kobayashi, J. Soc. Instrum. Control Eng. 7, 761 (1968), in Japanese.

1966 (1)

1964 (2)

M. Gaster, J. Fluid Mech. 20, 183 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Aizu, Y.

Y. Aizu, T. Ushizaka, T. Asakura, Oyo Butsuri 51, 860 (1982), in Japanese.

Asakura, T.

Y. Aizu, T. Ushizaka, T. Asakura, Oyo Butsuri 51, 860 (1982), in Japanese.

T. Ushizaka, T. Asakura, Rev. Laser Eng. 8, 496 (1980), in Japanese.
[CrossRef]

T. Ushizaka, T. Asakura, Jpn. J. Opt. 8, 157 (1979), in Japanese.

T. Ushizaka, H. Mishina, T. Asakura, Oyo Butsuri 46, 781 (1977), in Japanese.

Ator, J. T.

Ballik, E. A.

Chan, J. H. C.

Cummins, H. Z.

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Gaster, M.

M. Gaster, J. Fluid Mech. 20, 183 (1964).
[CrossRef]

Hayashi, A.

Itakura, Y.

Kitagawa, Y.

Knable, N.

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Kobayashi, A.

M. Naito, Y. Ohkami, A. Kobayashi, J. Soc. Instrum. Control Eng. 7, 761 (1968), in Japanese.

Mishina, H.

T. Ushizaka, H. Mishina, T. Asakura, Oyo Butsuri 46, 781 (1977), in Japanese.

Naito, M.

M. Naito, Y. Ohkami, A. Kobayashi, J. Soc. Instrum. Control Eng. 7, 761 (1968), in Japanese.

Ohkami, Y.

M. Naito, Y. Ohkami, A. Kobayashi, J. Soc. Instrum. Control Eng. 7, 761 (1968), in Japanese.

Sugimura, A.

Tsutsumi, S.

Ushizaka, T.

Y. Aizu, T. Ushizaka, T. Asakura, Oyo Butsuri 51, 860 (1982), in Japanese.

T. Ushizaka, T. Asakura, Rev. Laser Eng. 8, 496 (1980), in Japanese.
[CrossRef]

T. Ushizaka, T. Asakura, Jpn. J. Opt. 8, 157 (1979), in Japanese.

T. Ushizaka, H. Mishina, T. Asakura, Oyo Butsuri 46, 781 (1977), in Japanese.

Yeh, Y.

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Appl. Opt. (4)

J. Fluid Mech. (1)

M. Gaster, J. Fluid Mech. 20, 183 (1964).
[CrossRef]

J. Soc. Instrum. Control Eng. (1)

M. Naito, Y. Ohkami, A. Kobayashi, J. Soc. Instrum. Control Eng. 7, 761 (1968), in Japanese.

Jpn. J. Opt. (1)

T. Ushizaka, T. Asakura, Jpn. J. Opt. 8, 157 (1979), in Japanese.

Oyo Butsuri (2)

Y. Aizu, T. Ushizaka, T. Asakura, Oyo Butsuri 51, 860 (1982), in Japanese.

T. Ushizaka, H. Mishina, T. Asakura, Oyo Butsuri 46, 781 (1977), in Japanese.

Phys. Rev. Lett. (1)

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Rev. Laser Eng. (1)

T. Ushizaka, T. Asakura, Rev. Laser Eng. 8, 496 (1980), in Japanese.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of measuring flow velocity using a transmission grating.

Fig. 2
Fig. 2

Schematic diagram of the apparatus for measuring flow velocity.

Fig. 3
Fig. 3

Block diagram and time chart of the signal analyzing system. The system measures the period of the photomultiplier output.

Fig. 4
Fig. 4

Schematic diagram for the velocity measurements using the differential laser Doppler method.

Fig. 5
Fig. 5

Frequency histograms of the flow velocity along the cross-sectional axis of a rectangular tube obtained using (a) the transmission grating method and (b) the differential laser Doppler method.

Fig. 6
Fig. 6

Frequency histograms of the flow velocity along half of the cross-sectional axis of a cylindrical glass tube having a diameter of 3.5 mm.

Fig. 7
Fig. 7

Frequency histograms of the flow velocity along the cross-sectional axis of a cylindrical glass tube having a diameter of 180 μm.

Fig. 8
Fig. 8

Flow velocity distributions along the cross-sectional axes of four different flow tubes: (a) rectangular (4.0 × 1.4 mm), (b) cylindrical (3.5-mm diam), (c) cylindrical (700-μm diam), and (d) cylindrical (130-μm diam). The solid curves correspond to theoretical calculations.

Fig. 9
Fig. 9

Visibility of PMT output signal as a function of the distance from the image plane to the test plate.

Metrics