Abstract

An array of square apertures in a conducting film behaves as a high-pass filter element. By contrast, an array of cross-shaped apertures exhibits bandpass behavior. We have investigated experimentally how variations in the pattern periodicity, the crossarm width, and the separation between the crosses alter the spectral behavior. We find that these bandpass filters can have excellent peak transmission and good shortwave rejection. The wavelength of peak transmission is determined by the length of the crossarm (and not by the array period itself), while the bandwidth is determined chiefly by coupling between the crosses. These results are qualitatively consistent with a coupled-dipole model. This model appears to have more utility for practical filter design than the commonly used transmission-line model.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, Appl. Opt. 7, 1987 (1968).
    [CrossRef]
  2. R. Ulrich, Infrared Phys. 7, 35 (1967).
  3. J. A. Arnaud, F. A. Pelow, Bell Syst. Tech. J. 54, 263 (1975).
  4. I. Anderson, Bell Syst. Tech. J. 54, 1725 (1975).
  5. J. E. Davies, Infrared Phys. 20, 287 (1980).
    [CrossRef]
  6. V. P. Tomaselli, D. C. Edewaard, P. Gillan, K. D. Moller, Appl. Opt. 20, 1361 (1981).
    [CrossRef] [PubMed]
  7. J. D. Kraus, Antennas (McGraw-Hill, New York, 1950), Chaps. 9 and 10.
  8. H. G. Booker, J. Inst. Electr. Eng. 93, 620 (1946).

1981 (1)

1980 (1)

J. E. Davies, Infrared Phys. 20, 287 (1980).
[CrossRef]

1975 (2)

J. A. Arnaud, F. A. Pelow, Bell Syst. Tech. J. 54, 263 (1975).

I. Anderson, Bell Syst. Tech. J. 54, 1725 (1975).

1968 (1)

1967 (1)

R. Ulrich, Infrared Phys. 7, 35 (1967).

1946 (1)

H. G. Booker, J. Inst. Electr. Eng. 93, 620 (1946).

Anderson, I.

I. Anderson, Bell Syst. Tech. J. 54, 1725 (1975).

Arnaud, J. A.

J. A. Arnaud, F. A. Pelow, Bell Syst. Tech. J. 54, 263 (1975).

Booker, H. G.

H. G. Booker, J. Inst. Electr. Eng. 93, 620 (1946).

Davies, J. E.

J. E. Davies, Infrared Phys. 20, 287 (1980).
[CrossRef]

Edewaard, D. C.

Gillan, P.

Kraus, J. D.

J. D. Kraus, Antennas (McGraw-Hill, New York, 1950), Chaps. 9 and 10.

Moller, K. D.

Pelow, F. A.

J. A. Arnaud, F. A. Pelow, Bell Syst. Tech. J. 54, 263 (1975).

Tomaselli, V. P.

Ulrich, R.

R. Ulrich, Appl. Opt. 7, 1987 (1968).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 35 (1967).

Appl. Opt. (2)

Bell Syst. Tech. J. (2)

J. A. Arnaud, F. A. Pelow, Bell Syst. Tech. J. 54, 263 (1975).

I. Anderson, Bell Syst. Tech. J. 54, 1725 (1975).

Infrared Phys. (2)

J. E. Davies, Infrared Phys. 20, 287 (1980).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 35 (1967).

J. Inst. Electr. Eng. (1)

H. G. Booker, J. Inst. Electr. Eng. 93, 620 (1946).

Other (1)

J. D. Kraus, Antennas (McGraw-Hill, New York, 1950), Chaps. 9 and 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross-shaped master patterns used to generate the arrays. (b) Definition of cross-shaped parameters.

Fig. 2
Fig. 2

Type 1 array etched into an aluminum film on a 10-μm Mylar substrate with g = 410 μm.

Fig. 3
Fig. 3

Freestanding array of type 3 etched in 4-μm nickel foil, with g = 330 μm.

Fig. 4
Fig. 4

(a) Transmission spectra for array types 1–3. (b) Transmission spectra for types 4–6.

Fig. 5
Fig. 5

(a) Resonant wavelength vs array period. (b) Resonant wavelength vs crossarm length for the same arrays as in (a). Numbers refer to cross type as in Fig. 1.

Fig. 6
Fig. 6

Resonant wavelength vs coupling parameter b/a.

Fig. 7
Fig. 7

Transmission bandwidth vs b/a.

Fig. 8
Fig. 8

Comparison of transmission spectra for two good quality arrays with one poor quality array. All arrays were generated from the same master pattern.

Tables (1)

Tables Icon

Table I Summary of Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ res = 2.1 ( 1 + b / L ) L .
δ λ λ m = α + f ( b / a ) ,
δ λ λ m = 0.15 + 0.25 ( b / a )

Metrics