Abstract

A novel type of fiber-optic acceleration sensor was constructed of a photoelastic substance such as isotropic epoxy resin, DAP (diallylphthalate polymer), or LiNbO3 single crystal. By a weight placed on the upper surface of the rectangular rod of photoelastic material, stress-induced birefringence is brought about in response to vibrational acceleration. With this sensor, acceleration from 10−3 to 30 G was accurately measured in the frequency range from dc to 3 kHz.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kyuma, S. Tai, K. Hamanaka, M. Nunoshita, Appl. Opt. 20, 2424 (1981).
    [CrossRef] [PubMed]
  2. K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
    [CrossRef]
  3. S. Tai, K. Kyuma, M. Nunoshita, in Proceedings, First Sensor Symposium, 255 (1981).
  4. K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
    [CrossRef]
  5. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.
  6. S. D. Personick, Bell Syst. Tech. J. 52, 843 (1973).

1982 (2)

K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
[CrossRef]

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

1981 (1)

1973 (1)

S. D. Personick, Bell Syst. Tech. J. 52, 843 (1973).

Hamanaka, K.

Ida, Y.

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.

Kyuma, K.

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
[CrossRef]

K. Kyuma, S. Tai, K. Hamanaka, M. Nunoshita, Appl. Opt. 20, 2424 (1981).
[CrossRef] [PubMed]

S. Tai, K. Kyuma, M. Nunoshita, in Proceedings, First Sensor Symposium, 255 (1981).

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.

Mikami, N.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.

Nunoshita, M.

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
[CrossRef]

K. Kyuma, S. Tai, K. Hamanaka, M. Nunoshita, Appl. Opt. 20, 2424 (1981).
[CrossRef] [PubMed]

S. Tai, K. Kyuma, M. Nunoshita, in Proceedings, First Sensor Symposium, 255 (1981).

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.

Personick, S. D.

S. D. Personick, Bell Syst. Tech. J. 52, 843 (1973).

Sawada, T.

K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
[CrossRef]

Tai, S.

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
[CrossRef]

K. Kyuma, S. Tai, K. Hamanaka, M. Nunoshita, Appl. Opt. 20, 2424 (1981).
[CrossRef] [PubMed]

S. Tai, K. Kyuma, M. Nunoshita, in Proceedings, First Sensor Symposium, 255 (1981).

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.

Takioka, T.

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

S. D. Personick, Bell Syst. Tech. J. 52, 843 (1973).

IEEE J. Quantum Electron. (2)

K. Kyuma, S. Tai, T. Sawada, M. Nunoshita, IEEE J. Quantum Electron. QE-18, 676 (1982).
[CrossRef]

K. Kyuma, S. Tai, M. Nunoshita, T. Takioka, Y. Ida, IEEE J. Quantum Electron. QE-18, 1619 (1982).
[CrossRef]

Other (2)

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, J. Lightwave Technol.LT-1 (1983) to be published.

S. Tai, K. Kyuma, M. Nunoshita, in Proceedings, First Sensor Symposium, 255 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic configuration of the fiber-optic acceleration sensor.

Fig. 2
Fig. 2

Arrangement of the PE material.

Fig. 3
Fig. 3

Calculated SNR of the receiver’s output signal as a function of the applied acceleration.

Fig. 4
Fig. 4

Experimentally obtained SNR of the receiver’s output signal as a function of the applied acceleration.

Fig. 5
Fig. 5

Relationship between detection sensitivity and mass of the weight for epoxy resin.

Fig. 6
Fig. 6

Linearity between applied acceleration and the receiver's output voltage.

Fig. 7
Fig. 7

Vibrational frequency characteristics of the sensor with an epoxy resin rod. Applied acceleration is a constant of 2.0 G.

Fig. 8
Fig. 8

Cutoff frequency as a function of the mass of the weight for the epoxy resin sensor.

Fig. 9
Fig. 9

Temperaure dependence of output voltage variation for the epoxy resin sensor.

Fig. 10
Fig. 10

Observed waveform of the epoxy resin sensor (m = 25 g, α = 0.5 G, f = 250 Hz).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = m g + m d 2 d t 2 y ( t ) = m g ( 1 - ω 2 A g sin ω t ) ,
Γ = 2 π l C T λ ,
Γ = 2 π l m g C λ S ( 1 - α sin ω t ) ,
β = 2 π l m g C α λ S + 2 π l m g C 2 π l m g C α λ S ( λ S 2 π l m g C ) .
SNR = S p - p / N rms = 2 ( η e λ h c β P 0 ) 2 2 e η e λ h c P 0 B + 4 k T 0 R L F 0 B ,

Metrics