Abstract

Detailed studies have been carried out for various dopants on the coupling length (L) of the two fundamental modes of orthogonal polarization to preserve a state of linear polarization over long lengths. Theoretical calculations indicate that L < 2.3 mm is essential to maintain good polarization. Two fundamental single polarization fibers, the elliptical-core and elliptical-clad fibers, have been prepared by CVD. Experimental results show that a B2O3 dopant yields a substantially large anisotropic birefringence than does GeO2 and P2O5. The effects of noncircularity and normalized frequency of the fiber on L have been experimentally considered.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Gambling, D. N. Payne, H. Matsumura, in Technical Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD5.
  2. V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).
  3. D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).
  4. I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
    [CrossRef]
  5. R. Olshansky, Appl. Opt. 14, 935 (1975).
    [PubMed]
  6. V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
    [CrossRef]
  7. R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
    [CrossRef]
  8. R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
    [CrossRef]
  9. H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.
  10. D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).
  11. R. Olshansky, Appl. Opt. 14, 20 (1975).
    [PubMed]
  12. T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.
  13. V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
    [CrossRef] [PubMed]
  14. H. Matsumura, T. Suganuma, Appl. Opt. 19, 3151 (1980).
    [CrossRef] [PubMed]
  15. A. W. Snyder, W. R. Young, J. Opt. Soc. Am. 68, 297 (1978).
    [CrossRef]
  16. F. I. Akers, R. E. Thompson, Appl. Opt. 21, 1720 (1982).
    [CrossRef] [PubMed]

1982 (1)

1981 (1)

I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
[CrossRef]

1980 (1)

1979 (2)

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

1978 (4)

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

A. W. Snyder, W. R. Young, J. Opt. Soc. Am. 68, 297 (1978).
[CrossRef]

1975 (3)

Akers, F. I.

Cozens, J. R.

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

Divino, M. D.

Dyott, R. B.

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

French, W. G.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, in Technical Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD5.

Gloge, D.

D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).

Kaiser, P.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Katsuyama, T.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

Marcuse, D.

D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).

Matsumura, H.

H. Matsumura, T. Suganuma, Appl. Opt. 19, 3151 (1980).
[CrossRef] [PubMed]

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

W. A. Gambling, D. N. Payne, H. Matsumura, in Technical Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD5.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Morris, D. G.

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

Olshansky, R.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, in Technical Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD5.

Pleibel, W.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Snyder, A. W.

Standley, R. D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

Stolen, R. H.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Suganuma, T.

H. Matsumura, T. Suganuma, Appl. Opt. 19, 3151 (1980).
[CrossRef] [PubMed]

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Sze, D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

Thompson, R. E.

Young, W. R.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Bell Syst. Tech. J. (2)

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).

Electron. Lett. (1)

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (4)

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

W. A. Gambling, D. N. Payne, H. Matsumura, in Technical Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD5.

D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of a fiber pressed against a tension central member surface with one lump by a uniform force.

Fig. 2
Fig. 2

Fiber cross sections: (a) elliptical-core; (b) elliptical-clad.

Fig. 3
Fig. 3

Coupling length as a function of molar concentrations of various dopants at 0.633-μm wavelength. The fiber cross sections are almost circularly symmetric.

Fig. 4
Fig. 4

Coupling length vs the core ellipticity for GeO2 and P2O5 dopants in the elliptical-core fiber. The dopant concentrations are 27 and 12 mol %, respectively.

Fig. 5
Fig. 5

Coupling length vs the clad ellipticity in the elliptical-clad B2O3-doped fiber. The dopant concentrations are 14 mol % and the core is circular.

Fig. 6
Fig. 6

Light scattering from the elliptical-core fiber with 27-mol % GeO2 and 63% ellipticity.

Fig. 7
Fig. 7

Coupling length as a function of the normalized frequency of the GeO2-doped elliptical-core fiber for various core ellipticities. The relative index difference is 3.4%, which corresponds to 30-mol % GeO2 dopant.

Fig. 8
Fig. 8

Coupling length as a function of the normalized frequency of the B2O3-doped elliptical-clad fiber for various clad ellipticities. The relative index difference between core and clad is 0.7% and the concentration of the B2O3 dopant is 14 mol %.

Fig. 9
Fig. 9

Experimental setup for measuring the extinction ratio.

Fig. 10
Fig. 10

Extinction ratios of single polarization fibers vs fiber length. Fibers used in the experiments were GeO2-doped elliptical-core and B2O3-doped elliptical-clad.

Fig. 11
Fig. 11

Extinction ratio as a function of the normalized frequency of the elliptical-core fiber. The 1-m long fibers had 81.6% ellipticity, 3.4% index difference between core and clad.

Fig. 12
Fig. 12

Spectral attenuations of the elliptical-core fibers: (a) 17.6% core ellipticity and 29-mol % GeO2; (b) 82.6% core ellipticity and 57-mol % GeO2.

Fig. 13
Fig. 13

Rayleigh scattering coefficient vs index difference for the GeO2 dopant in elliptical-core fibers.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d P x / d z = h ( - P x + P y ) ,             d P y / d z = h ( P x - P y ) ,
ϕ = tanh ( h z ) ,
E I d 4 y / d z 4 = - D y ,
I = ( π / 4 ) d 4 .
y = 2 l sin ( q z + π 4 ) exp ( - q z ) ,
q = ( D / π E ) 1 / 4 d - 1 .
C ( Δ β ) = N l 2 [ ( 8 q 3 Δ β 2 ) / ( 4 q 4 + Δ β 4 ) ] 2 .
2 q < Δ β
Δ β > 2700 rad / m .
L = 2.3 mm
δ = ( a x - a y ) / ( a x + a y ) × 100 ( % ) ,
L = 4.2 × 10 - 5 C - 7.8             for B 2 O 3 , L = 8.9 × 10 - 2 C - 3.9             for GeO 2 , L = 2.3 C - 2.7             for P 2 O 5 .
η = 10 log 10 ( P y / P x ) ,
A = 0.45 + 1.16 Δ + 0.43 Δ 2 + 0.06 Δ 3 ( dB / km · λ 4 ) .

Metrics