Abstract

Low-loss single polarization fibers that maintain a state of linear polarization well are proposed. This fiber is composed of four regions: the concentric circular GeO2- and/or P2O5-doped core and pure silica clad regions for constructing the low-loss waveguide, and the B2O3-doped elliptical-jacket and the silica outer support regions for introducing the large nonsymmetric stress in the core. Theoretical and experimental studies on the coupling length of the two fundamental modes of orthogonal polarization and transmission loss have been carried out. An extinction ratio of less than −33 dB at 1-km fiber length and a loss of <0.8 dB/km at 1.5 μm were achieved.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ramaswamy, R. D. Standley, W. G. French, Appl. Opt., 17, 3014 (1978).
    [CrossRef] [PubMed]
  2. T. Katsuyama, H. Matsumura, T. Suganuma, Appl. Opt. 22, 0000 (1983), same issue.
  3. H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.
  4. V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
    [CrossRef]
  5. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).
  6. T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
    [CrossRef]
  7. V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
    [CrossRef] [PubMed]
  8. T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
    [CrossRef]
  9. S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.
  10. H. Poritsky, Physics 5, 406 (1934).
    [CrossRef]
  11. J. E. Sheloy, J. Appl. Phys. 45, 5272 (1974).
    [CrossRef]
  12. Y. Namihira, M. Kudo, Y. Mushiake, Trans. IECE Jpn. 60-C, 391 (1977).
  13. I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
    [CrossRef]
  14. K. Inada, Opt. Commun. 19, 437 (1976).
    [CrossRef]
  15. T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.
  16. R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
    [CrossRef]
  17. Y. Namihira, M. Kudo, Y. Mushiake, IECE Jpn. 64, 180 (1981).
  18. D. E. Gray, Ed. American Institute of Physics Handbook (McGraw-Hill, New York, 1963).
  19. S. Satoh, (Hitachi Central Research Laboratory), private communication.
  20. D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).
  21. K. Mochizuki, Y. Namihira, Y. Ejiri, Appl. Opt. 21, 4223 (1982).
    [CrossRef] [PubMed]

1983

T. Katsuyama, H. Matsumura, T. Suganuma, Appl. Opt. 22, 0000 (1983), same issue.

1982

1981

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Y. Namihira, M. Kudo, Y. Mushiake, IECE Jpn. 64, 180 (1981).

1979

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

1978

V. Ramaswamy, R. D. Standley, W. G. French, Appl. Opt., 17, 3014 (1978).
[CrossRef] [PubMed]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

1977

Y. Namihira, M. Kudo, Y. Mushiake, Trans. IECE Jpn. 60-C, 391 (1977).

1976

K. Inada, Opt. Commun. 19, 437 (1976).
[CrossRef]

1974

J. E. Sheloy, J. Appl. Phys. 45, 5272 (1974).
[CrossRef]

1934

H. Poritsky, Physics 5, 406 (1934).
[CrossRef]

Cozens, J. R.

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

Divino, M. D.

Dyott, R. B.

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

Edahiro, T.

T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

Ejiri, Y.

French, W. G.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

V. Ramaswamy, R. D. Standley, W. G. French, Appl. Opt., 17, 3014 (1978).
[CrossRef] [PubMed]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
[CrossRef]

Hoshikawa, M.

S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.

Inada, K.

K. Inada, Opt. Commun. 19, 437 (1976).
[CrossRef]

Inagaki, N.

S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.

Kaiser, P.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, T. Suganuma, Appl. Opt. 22, 0000 (1983), same issue.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Kudo, M.

Y. Namihira, M. Kudo, Y. Mushiake, IECE Jpn. 64, 180 (1981).

Y. Namihira, M. Kudo, Y. Mushiake, Trans. IECE Jpn. 60-C, 391 (1977).

Marcuse, D.

D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).

Matsumura, H.

T. Katsuyama, H. Matsumura, T. Suganuma, Appl. Opt. 22, 0000 (1983), same issue.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.

Mochizuki, K.

Morris, D. G.

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

Mushiake, Y.

Y. Namihira, M. Kudo, Y. Mushiake, IECE Jpn. 64, 180 (1981).

Y. Namihira, M. Kudo, Y. Mushiake, Trans. IECE Jpn. 60-C, 391 (1977).

Namihira, Y.

K. Mochizuki, Y. Namihira, Y. Ejiri, Appl. Opt. 21, 4223 (1982).
[CrossRef] [PubMed]

Y. Namihira, M. Kudo, Y. Mushiake, IECE Jpn. 64, 180 (1981).

Y. Namihira, M. Kudo, Y. Mushiake, Trans. IECE Jpn. 60-C, 391 (1977).

Okamoto, K.

T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

Pleibel, W.

Poritsky, H.

H. Poritsky, Physics 5, 406 (1934).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[CrossRef] [PubMed]

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

V. Ramaswamy, R. D. Standley, W. G. French, Appl. Opt., 17, 3014 (1978).
[CrossRef] [PubMed]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
[CrossRef]

Satoh, S.

S. Satoh, (Hitachi Central Research Laboratory), private communication.

Sheloy, J. E.

J. E. Sheloy, J. Appl. Phys. 45, 5272 (1974).
[CrossRef]

Standley, R. D.

Stolen, R. H.

Suganuma, T.

T. Katsuyama, H. Matsumura, T. Suganuma, Appl. Opt. 22, 0000 (1983), same issue.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Tanaka, S.

S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.

Yokota, H.

S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.

Appl. Opt.

Appl. Phys. Lett.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

Electron. Lett.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 531 (1981).

T. Hosaka, K. Okamoto, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 191 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

R. B. Dyott, J. R. Cozens, D. G. Morris, Electron. Lett. 15, 380 (1979).
[CrossRef]

IECE Jpn.

Y. Namihira, M. Kudo, Y. Mushiake, IECE Jpn. 64, 180 (1981).

J. Appl. Phys.

J. E. Sheloy, J. Appl. Phys. 45, 5272 (1974).
[CrossRef]

Opt. Commun.

K. Inada, Opt. Commun. 19, 437 (1976).
[CrossRef]

Physics

H. Poritsky, Physics 5, 406 (1934).
[CrossRef]

Trans. IECE Jpn.

Y. Namihira, M. Kudo, Y. Mushiake, Trans. IECE Jpn. 60-C, 391 (1977).

Other

S. Tanaka, H. Yokota, M. Hoshikawa, T. Miya, N. Inagaki, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 37.

D. E. Gray, Ed. American Institute of Physics Handbook (McGraw-Hill, New York, 1963).

S. Satoh, (Hitachi Central Research Laboratory), private communication.

D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).

T. Katsuyama, H. Matsumura, T. Suganuma, to be submitted.

H. Matsumura, T. Katsuyama, T. Suganuma, in Technical Digest, Sixth European Conference on Optical Communication, U. York (1980), p. 49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Elliptical-jacket fiber with 0.55 jacket ellipticity.

Fig. 2
Fig. 2

Schematic view of circular symmetric jacket fiber.

Fig. 3
Fig. 3

Transmission loss at 1.55 μm due to intrinsic infrared absorption as a function of core/clad radii ratio for various values of the B–O bond loss (L B ) at normalized frequency (V) = 2.4.

Fig. 4
Fig. 4

Modal birefringence as a function of jacket ellipticity. Solid and open circles represent the experimental results for elliptical-jacket fibers and elliptical-clad fibers, respectively. The solid line represents the theoretical prediction using Eq. (8).

Fig. 5
Fig. 5

Birefringence as a function of the normalized frequency of the fiber for various values of the jacket ellipticity.

Fig. 6
Fig. 6

Extinction ratio as a function of the normalized frequency for 1-m long straight fiber.

Fig. 7
Fig. 7

Extinction ratio as a function of fiber length for a fiber of Δβ = 5200 rad/m at 0.633-μm wavelength. Normalized frequencies are 2.2 and 7.0.

Fig. 8
Fig. 8

Extinction ratio as a function of temperature for various values of Δβ.

Fig. 9
Fig. 9

Extinction ratio as a function of the radius of curvature of the fiber for various values of Δβ.

Fig. 10
Fig. 10

Transmission loss at 1.55 μm due to infrared absorption of the B–O bond as a function of the core/clad radii ratio for a normalized frequency of 2 at 1.55-μm wavelength.

Fig. 11
Fig. 11

Typical loss spectra of elliptical-jacket single polarization fibers: (a) Fiber with minimum loss of 0.8 dB/km at 1.55 μm. The birefringence is 3 × 10−4. (b) Fiber with structural imperfection is reduced further. The birefringence is 2.7 × 10−4.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

σ r i = A i + B i / r 2 , σ θ i = A i - B i / r 2 , σ z i = C i ,
e r i = σ r i E i - ν i E i ( σ θ i + σ z i ) + α i Δ T i , e θ i = σ θ i E i - ν i E i ( σ r i + σ z i ) + α i Δ T i , e z i = σ z i E i - ν i E i ( σ r i + σ θ i ) + α i Δ T i ,
σ r 1 = σ θ 1 = 1 2 σ z 1 = E 2 ( 1 - ν ) [ ( a 2 d 2 - 1 ) K 12 + ( b 2 d 2 - 1 ) K 23 + ( c 2 d 2 - 1 ) K 34 ] ,
K i j = α i Δ T i - α j Δ T j .
n r i - n i = γ 1 σ r i + γ 2 ( σ θ i + σ z i ) ,
n r 1 = n 1 + ( γ 1 + 3 γ 2 ) E 2 ( 1 - ν ) [ ( a 2 d 2 - 1 ) K 12 + ( b 2 d 2 - 1 ) K 23 + ( c 2 d 2 - 1 ) K 34 ] ,
δ j a = ( c x - c y ) / ( c x + c y ) .
Δ n = n r 1 ( c x ) - n r 1 ( c y ) = ( γ 1 + 3 γ 2 ) E 2 ( 1 - ν ) d 2 ( c x 2 - c y 2 ) K 34 = 2 ( γ 1 + 3 γ 2 ) E c ˜ 2 ( 1 - ν ) d 2 K 34 δ j a ,
Δ β 2 π λ Δ n ,
L = 2 π Δ β = λ Δ n ,
Δ n r 1 = ( γ 1 + 3 γ 2 ) E ( 1 - ν ) d 2 ( a K 12 Δ a + b K 23 Δ b + c K 34 Δ c ) .
α ( λ ) = A λ 4 + B + C ( λ ) ,
C ( λ ) = L B P O ( dB / km ) ,
γ 1 = - 0.605 × 10 - 5 mm 2 / kg             d = 75 μ m ,             ( 6.2 × 10 - 3 m 3 / N ) , γ 2 = - 4.15 × 10 - 5 mm 2 / kg             α 2 = 5.4 × 10 - 7 ,             ( 4.2 × 10 - 12 m 2 / N ) , E = 7300 kg / mm 2             α 3 = 23 × 10 - 7 ,             ( 7.2 × 10 10 N / m 2 ) , ν = 0.23 ,             Δ T 2 = 1560 ° C , c ˜ = 32 μ m ,             Δ T 3 = 580 ° C .
a K 12 : b K 23 : c K 34 = 1 : 12 : 75.
η = 10 log ( P y / P x ) ,

Metrics