Abstract

A pulsed CO2 lidar was used to measure atmospheric extinction and backscattering at 10 μm during different types of weather. Comparison was made between extinction evaluated from the atmospheric echo and from measurements against calibrated plates. Vertical soundings showed that the backscatter could drop a factor of 10 during the first kilometer. The implications of extinction and backscatter to the performance of single-ended CO2 lidars for atmospheric sensing are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Harney, Ed., Physics and Technology of Coherent Infrared Radar, Proc. Soc. Photo-Opt. Instrum. Eng. 300 (1981).
  2. Technical Digest, Workshop on Optical and Laser Remote Sensing (Optical Society of America, Washington, D.C., 1982).
  3. H. T. Mudd, C. H. Kruger, E. R. Murray, Appl. Opt. 21, 1146 (1982).
    [CrossRef] [PubMed]
  4. T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).
  5. J. W. Bilbro, Opt. Eng. 19, 533 (1980).
    [CrossRef]
  6. E. R. Murray, M. F. Williams, J. E. van der Laan, Appl. Opt. 17, 296 (1978).
    [CrossRef] [PubMed]
  7. R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
    [CrossRef]
  8. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
    [CrossRef] [PubMed]
  9. B. J. Rye, Opt. Commun. 11, 441 (1979).
  10. O. Steinvall, “Computed Mie Scattering Properties for Laser Wavelengths in Various Atmospheric Media,” National Defense Research Institute (FOA) Report C2662-E1,E3 (1974).
  11. B. Nilsson, A. Hȧgȧrd, “Aerosol Extinction Studies in the Visible and IR Regions,” in Conference Proceedings International Defense Electronics Expo, Hannover, May 1982.
  12. R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation,” AFGL-TR-78-0029 (1978).
  13. J. C. Petheram, Appl. Opt. 20, 3941 (1981).
    [CrossRef] [PubMed]
  14. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  15. A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
    [CrossRef]
  16. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  17. J. D. Klett, Appl. Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  18. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
    [CrossRef]

1982

1981

R. C. Harney, Ed., Physics and Technology of Coherent Infrared Radar, Proc. Soc. Photo-Opt. Instrum. Eng. 300 (1981).

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

J. D. Klett, Appl. Opt. 20, 211 (1981).
[CrossRef] [PubMed]

J. C. Petheram, Appl. Opt. 20, 3941 (1981).
[CrossRef] [PubMed]

1980

J. W. Bilbro, Opt. Eng. 19, 533 (1980).
[CrossRef]

1979

B. J. Rye, Opt. Commun. 11, 441 (1979).

1978

A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

E. R. Murray, M. F. Williams, J. E. van der Laan, Appl. Opt. 17, 296 (1978).
[CrossRef] [PubMed]

1976

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Barrett, E. W.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, Opt. Eng. 19, 533 (1980).
[CrossRef]

Cupp, R. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

D’Agati, A. P.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation,” AFGL-TR-78-0029 (1978).

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Derr, V. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

H?g?rd, A.

A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

B. Nilsson, A. Hȧgȧrd, “Aerosol Extinction Studies in the Visible and IR Regions,” in Conference Proceedings International Defense Electronics Expo, Hannover, May 1982.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Hall, F. F.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Huffaker, R. M.

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Keeler, R. J.

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Killinger, D. K.

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Klett, J. D.

Kruger, C. H.

Lawrence, T. R.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

McClatchey, R. A.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation,” AFGL-TR-78-0029 (1978).

Menyuk, N.

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Mudd, H. T.

Murray, E. R.

Nilsson, B.

A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

B. Nilsson, A. Hȧgȧrd, “Aerosol Extinction Studies in the Visible and IR Regions,” in Conference Proceedings International Defense Electronics Expo, Hannover, May 1982.

Ottersten, H.

A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Petheram, J. C.

Post, M. J.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Pueschel, R. F.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Richter, R. A.

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

Rye, B. J.

B. J. Rye, Opt. Commun. 11, 441 (1979).

Schwiesow, R. L.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Sinclair, P. C.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Steinvall, O.

A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

O. Steinvall, “Computed Mie Scattering Properties for Laser Wavelengths in Various Atmospheric Media,” National Defense Research Institute (FOA) Report C2662-E1,E3 (1974).

van der Laan, J. E.

E. R. Murray, M. F. Williams, J. E. van der Laan, Appl. Opt. 17, 296 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Williams, M. F.

Appl. Opt.

Appl. Phys. Lett.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

IEEE J. Quantum Electron.

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

J. Appl. Meteorol.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Opt. Commun.

B. J. Rye, Opt. Commun. 11, 441 (1979).

Opt. Eng.

J. W. Bilbro, Opt. Eng. 19, 533 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

T. R. Lawrence, R. M. Huffaker, R. J. Keeler, M. J. Post, R. A. Richter, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 34 (1981).

R. C. Harney, Ed., Physics and Technology of Coherent Infrared Radar, Proc. Soc. Photo-Opt. Instrum. Eng. 300 (1981).

Radio Sci.

A. Hȧgȧrd, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Other

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Technical Digest, Workshop on Optical and Laser Remote Sensing (Optical Society of America, Washington, D.C., 1982).

O. Steinvall, “Computed Mie Scattering Properties for Laser Wavelengths in Various Atmospheric Media,” National Defense Research Institute (FOA) Report C2662-E1,E3 (1974).

B. Nilsson, A. Hȧgȧrd, “Aerosol Extinction Studies in the Visible and IR Regions,” in Conference Proceedings International Defense Electronics Expo, Hannover, May 1982.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation,” AFGL-TR-78-0029 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Maximum range, Rmax, defined as the range after which the single pulse signal has dropped down to the noise level. Assumed lidar parameters are defined in the text and atmospheric data are given in Table I.

Fig. 2
Fig. 2

Minimum detectable relative concentration ΔC/C for a CO2 lidar assuming a pollution cloud of 150 m diam located at different ranges and with different absorption burdens αC. The solid curves correspond to a minimum signal fluctuation ΔP/P = 2% and the broken curves to ΔP/P = SNR−1. The same lidar parameters as in Fig. 1 were used.

Fig. 3
Fig. 3

Plot of some theoretical values for particle attenuation (σP) and backscatter (β). The assumed aerosol data are found in Refs. 15 (lognormal), 16, and 10.

Fig. 4
Fig. 4

Block diagram of the experimental system.

Fig. 5
Fig. 5

Particle attenuation coefficient σP at 10.26 μm evaluated from target measurements vs visual attenuation deduced from visibility observations.

Fig. 6
Fig. 6

Examples of lidar echoes obtained in clear weather and rain (left) together with the slope of the R2 compensated curves (right).

Fig. 7
Fig. 7

Extinction coefficients at 10.26 μm [R(18)] obtained for a horizontal path using a calibrated target and the slope of the backscatter curve.

Fig. 8
Fig. 8

Clear air backscatter echoes for different elevation angles.

Fig. 9
Fig. 9

Particle attenuation coefficient (σP) vs range for a slant path at 2° elevation. Comparison is made between σ obtained by analytical inversion and by taking the ratio between the curves at 0° and 2° elevation.

Fig. 10
Fig. 10

Vertical and horizontal lidar echoes during clear weather. The vertical profile shows cloud backscatter at ~1.5-km height.

Fig. 11
Fig. 11

Echoes at 0° and 5° elevation showing a thin cloud at an ~500-m slant range.

Fig. 12
Fig. 12

Inversion of the 5° echo in Fig. 11 assuming a reference value of σm = 0.14 km−1 at a 1.5-km range.

Fig. 13
Fig. 13

Measured values of the backscatter coefficient β vs the aerosol extinction coefficient σP.

Tables (3)

Tables Icon

Table I Assumed Extinction and Scattering Cross Sections for a CO2 Laser Wavelength for Different Weather Conditions

Tables Icon

Table II CO2 Lidar System

Tables Icon

Table III Examples of Variation in Backscatter Coefficient (βh) with Height (h)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P r ( R ) = M P 0 A r R 2 K exp - 2 0 R [ α λ C ( R ) + σ ( R ) ] d R ,
R max = R * exp ( - σ R max ) with R * = ( M P 0 A r K NEP ) 1 / 2 ,
C ( R 1 R 2 ) = 1 2 Δ R α [ ln Q ( R 1 ) - ln Q ( R 2 ) + ln β on ( R 2 ) β off - ln β on ( R 1 ) β off ] - σ on - σ off α ,
[ Δ C / C ] min 1 2 α C Δ R Δ P P .

Metrics