Abstract

A previously reported transmittance model for nitrogen dioxide in the two fundamental bands ν2 and ν3, plus the combination band ν1 + ν3, is now presented using upgraded synthetic spectra and measured data. The model consists of a well-established double-exponential function which approximates homogeneous path transmittance at 5-cm−1 intervals with a spectral resolution of 20 cm−1. Its parameters and other computational features are developed for direct compatibility with the widely used AFGL lowtran code. Transmittance calculations in the range from zero to unity deviate on the average ~0.84% from a combination of synthetic and measured spectra, which constitutes an improvement over the previously reported model.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 1976 National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere (U.S. Air Force, Washington, D.C., 1976).
  2. E. Robinson, R. C. Robbins, “Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants Supplement,” SRI PR-6755 (Stanford Research Institute, Menlo Park, Calif., 1969).
  3. R. D. Hudson, E. I. Reed, R. D. Bojkov, Eds., “The Stratosphere 1981: Theory and Measurements,” World Meteorological Organization (NASA/Goddard Space Flight Center, Greenbelt, Md., 1982).
  4. L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
    [CrossRef] [PubMed]
  5. A. Guttman, J. Quant. Spectrosc. Radiat. Transfer 2, 1 (1962).
    [CrossRef]
  6. A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
    [CrossRef]
  7. D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Infrared Absorption by H2O, NO, and NO2,” AFCRL-TR-75-0420 (AFCRL, Hanscom AFB, Mass., 1975).
  8. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance Computer Code lowtran 5,” AFGL Environmental Research Paper 697 (AFGL, Hanscom AFB, Mass., 1980).
  9. J. H. Pierluissi, K. Tomiyama, Appl. Opt. 19, 2298 (1980).
    [CrossRef] [PubMed]
  10. H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).
  11. R. R. Gruenzel, Appl. Opt. 17, 2591 (1978).
    [PubMed]
  12. J. H. Pierluissi, K. Tomiyama, R. B. Gomez, Appl. Opt. 18, 1607 (1979).
    [CrossRef] [PubMed]
  13. J. H. Pierluissi, K. Tomiyama, F. X. Kneizys, Appl. Opt. 20, 2517 (1981).
    [CrossRef] [PubMed]
  14. D. I. Ford, J. H. Shaw, Appl. Opt. 4, 1113 (1965).
    [CrossRef]
  15. IBM Manual System/360, “Scientific Subroutine Package H20-0205-3” (IBM, New York, 1968).
  16. S. L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1965).
  17. R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code laser,” AFGL Environmental Research Paper 622 (AFGL, Hanscom AFB, Mass., 1978).
  18. L. S. Rothman et al., Appl. Opt. 20, 1323 (1981).
    [CrossRef] [PubMed]
  19. M. A. H. Smith, “Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km,” NASA Tech. Memo. 83289 (NASA, Langley Research Center, Hampton, Va.1982).

1981 (2)

1980 (1)

1979 (1)

1978 (2)

1975 (1)

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

1965 (1)

1962 (1)

A. Guttman, J. Quant. Spectrosc. Radiat. Transfer 2, 1 (1962).
[CrossRef]

Bonoma, F. S.

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

Burch, D. E.

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Infrared Absorption by H2O, NO, and NO2,” AFCRL-TR-75-0420 (AFCRL, Hanscom AFB, Mass., 1975).

Clough, S. A.

L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
[CrossRef] [PubMed]

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

D’Agati, A. P.

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code laser,” AFGL Environmental Research Paper 622 (AFGL, Hanscom AFB, Mass., 1978).

Dube, D. J.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

Ford, D. I.

Gardner, M. E.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

Goldman, A.

L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
[CrossRef] [PubMed]

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

Gomez, R. B.

Gruenzel, R. R.

Gryvnak, D. A.

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Infrared Absorption by H2O, NO, and NO2,” AFCRL-TR-75-0420 (AFCRL, Hanscom AFB, Mass., 1975).

Guttman, A.

A. Guttman, J. Quant. Spectrosc. Radiat. Transfer 2, 1 (1962).
[CrossRef]

Kneizys, F. X.

J. H. Pierluissi, K. Tomiyama, F. X. Kneizys, Appl. Opt. 20, 2517 (1981).
[CrossRef] [PubMed]

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance Computer Code lowtran 5,” AFGL Environmental Research Paper 697 (AFGL, Hanscom AFB, Mass., 1980).

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

McClatchey, R. A.

L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
[CrossRef] [PubMed]

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code laser,” AFGL Environmental Research Paper 622 (AFGL, Hanscom AFB, Mass., 1978).

Murcray, D. G.

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

Pembrook, J. D.

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Infrared Absorption by H2O, NO, and NO2,” AFCRL-TR-75-0420 (AFCRL, Hanscom AFB, Mass., 1975).

Pierluissi, J. H.

Robbins, R. C.

E. Robinson, R. C. Robbins, “Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants Supplement,” SRI PR-6755 (Stanford Research Institute, Menlo Park, Calif., 1969).

Robinson, E.

E. Robinson, R. C. Robbins, “Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants Supplement,” SRI PR-6755 (Stanford Research Institute, Menlo Park, Calif., 1969).

Rothman, L. S.

L. S. Rothman et al., Appl. Opt. 20, 1323 (1981).
[CrossRef] [PubMed]

L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
[CrossRef] [PubMed]

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

Shaw, J. H.

Smith, H. J. P.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

Smith, M. A. H.

M. A. H. Smith, “Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km,” NASA Tech. Memo. 83289 (NASA, Langley Research Center, Hampton, Va.1982).

Snider, D. E.

L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978).
[CrossRef] [PubMed]

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

Tomiyama, K.

Williams, W. J.

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

Young, L. G.

Appl. Opt. (7)

J. Quant. Spectrosc. Radiat. Transfer (2)

A. Guttman, J. Quant. Spectrosc. Radiat. Transfer 2, 1 (1962).
[CrossRef]

A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
[CrossRef]

Other (10)

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Infrared Absorption by H2O, NO, and NO2,” AFCRL-TR-75-0420 (AFCRL, Hanscom AFB, Mass., 1975).

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance Computer Code lowtran 5,” AFGL Environmental Research Paper 697 (AFGL, Hanscom AFB, Mass., 1980).

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, L. S. Rothman, “fascode-Fast Atmospheric Signature Code,” AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).

IBM Manual System/360, “Scientific Subroutine Package H20-0205-3” (IBM, New York, 1968).

S. L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1965).

R. A. McClatchey, A. P. D’Agati, “Atmospheric Transmission of Laser Radiation: Computer Code laser,” AFGL Environmental Research Paper 622 (AFGL, Hanscom AFB, Mass., 1978).

M. A. H. Smith, “Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km,” NASA Tech. Memo. 83289 (NASA, Langley Research Center, Hampton, Va.1982).

1976 National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere (U.S. Air Force, Washington, D.C., 1976).

E. Robinson, R. C. Robbins, “Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants Supplement,” SRI PR-6755 (Stanford Research Institute, Menlo Park, Calif., 1969).

R. D. Hudson, E. I. Reed, R. D. Bojkov, Eds., “The Stratosphere 1981: Theory and Measurements,” World Meteorological Organization (NASA/Goddard Space Flight Center, Greenbelt, Md., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Samples of measured monochromatic transmittance data7 for NO2 at a total pressure of 1 atm and a temperature of 320 K for various absorber amounts.

Fig. 2
Fig. 2

Spectral transmittance calculations compared with a measured NO2 sample7 at a total pressure of 1 atm and a temperature of 328 K for an absorber amount of 0.4538 × 10−1 atm cm.

Fig. 3
Fig. 3

Spectral transmittance comparisons between the new line-by-line calculations (—) and the proposed optimal model (××) for the NO2ν2 band at 1 atm of total pressure and a temperature of 288.1 K for various absorber amounts.

Fig. 4
Fig. 4

Spectral transmittance comparisons between a mixture of new line-by-line calculations and measurements7 (—) and the proposed optimal model (××) for the NO2ν3 band at 1 atm of total pressure and a temperature of 328 K for various absorber amounts.

Fig. 5
Fig. 5

Spectral transmittance comparisons between the new line-by-line calculations (—) and the proposed optimal model (××) for the NO2ν1 + ν3 band at 1 atm of total pressure and a temperature of 288.1 K for various absorber amounts.

Tables (2)

Tables Icon

Table I Summary of the Results of Comparisons Between a Mixture of Line-by-Line and Measured Transmittance Data and the Proposed Model; Spectral Parameter C′ Given is to be Used with Eqs. (3)(5) with a1 = −0.25653, a2 = 0.88674, a3 = 0, n = 0.14859, and m = 0.55832

Tables Icon

Table II Recommended Vertical Mixing Ratio Profile for NO2 for the Atmospheric Layers in lowtran21

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

τ ν = exp [ - K ν ( P , T ) U ( P , T , Z ) ] ,
τ = τ ν Φ ν d ν / Φ ν d ν ,
τ = exp [ - 10 a 1 + a 2 X + a 3 X 2 ] ,
X = C ( Δ ν ) + log 10 W ,
W = ( P P o ) n ( T o T ) m U .
E i k = [ τ i k - exp ( - 10 a 1 + a 2 X i k + a 3 X 2 i k ) ] 2 ,
X i k = n log 10 ( P i k P o ) + m log 10 ( T o T i k ) + log 10 U i k + v 1 , i k C ( Δ ν 1 ) + v 2 , i k C ( Δ ν 2 ) + + v I , i k C ( Δ ν I ) .
E = i = 1 I k = 1 K E i k .
a 3 X i k 2 + a 2 X i k + a 1 - log 10 ( - ln τ i k ) = 0 ,
C ( Δ ν i ) = 1 K k = 1 K [ X i k - log 10 W i k ] .
U ( atm cm ) = 0.7732 × 10 - 4 ppmv ρ a ( gm / m 3 ) Z ( km ) ,

Metrics