Abstract

Lidar detection of atmospheric molecules using a Raman scattering technique being usually limited by low signals is enhanced by integration of the forward Raman scattered light over a large atmospheric volume. This integral can be measured instantaneously in the presence of a reflector at one edge of the optical path, increasing the SNR by a factor of 100 in the case of a perfect reflector and a beam path of ~2 km. Natural reflectors such as clouds leading to the same effect are also discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, Appl. Phys. Lett. 12, 40 (1967).
    [CrossRef]
  2. C. H. Penney, “Raman Scattering, Resonance Raman Scattering and Fluorescence Lidar,” at Eighth International Laser Raman Conference, Philadelphia (1977).
  3. T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
    [CrossRef]
  4. D. Renaut, J. C. Paurny, R. Capitini, Opt. Lett. 5, 233 (1980).
    [CrossRef] [PubMed]
  5. K. Petri, A. Salik, J. A. Cooney, Appl. Opt. 21, 1212 (1982).
    [CrossRef] [PubMed]
  6. G. L. Kenestric, J. A. Curcio, “Measurement of Radiance of Horizon Sky,” NRL Report 6615 (1967).
  7. C. A. Northend, R. C. Honey, W. F. Evans, Rev. Sci. Instrum. 37, 393 (1966).
    [CrossRef]
  8. A. Cohen, M. Kleiman, J. A. Cooney, Appl. Opt. 17, 1905 (1978).
    [CrossRef] [PubMed]
  9. R. C. Strauch, A. Cohen, “Atmospheric Remote Sensing with Laser Radar,” in Remote Sensing of the Troposphere, V. Derr, Ed. (U.S. GPO, Washington, D.C., 1972).
  10. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  11. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  12. A. Cohen, Appl. Opt. 14, 2873 (1975).
    [CrossRef] [PubMed]

1982 (1)

1980 (1)

1978 (1)

1975 (1)

1973 (1)

T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

1967 (1)

J. Cooney, Appl. Phys. Lett. 12, 40 (1967).
[CrossRef]

1966 (1)

C. A. Northend, R. C. Honey, W. F. Evans, Rev. Sci. Instrum. 37, 393 (1966).
[CrossRef]

Capitini, R.

Cohen, A.

A. Cohen, M. Kleiman, J. A. Cooney, Appl. Opt. 17, 1905 (1978).
[CrossRef] [PubMed]

A. Cohen, Appl. Opt. 14, 2873 (1975).
[CrossRef] [PubMed]

R. C. Strauch, A. Cohen, “Atmospheric Remote Sensing with Laser Radar,” in Remote Sensing of the Troposphere, V. Derr, Ed. (U.S. GPO, Washington, D.C., 1972).

Cooney, J.

J. Cooney, Appl. Phys. Lett. 12, 40 (1967).
[CrossRef]

Cooney, J. A.

Curcio, J. A.

G. L. Kenestric, J. A. Curcio, “Measurement of Radiance of Horizon Sky,” NRL Report 6615 (1967).

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

Evans, W. F.

C. A. Northend, R. C. Honey, W. F. Evans, Rev. Sci. Instrum. 37, 393 (1966).
[CrossRef]

Hirschfeld, T.

T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

Honey, R. C.

C. A. Northend, R. C. Honey, W. F. Evans, Rev. Sci. Instrum. 37, 393 (1966).
[CrossRef]

Kenestric, G. L.

G. L. Kenestric, J. A. Curcio, “Measurement of Radiance of Horizon Sky,” NRL Report 6615 (1967).

Kleiman, M.

Northend, C. A.

C. A. Northend, R. C. Honey, W. F. Evans, Rev. Sci. Instrum. 37, 393 (1966).
[CrossRef]

Paurny, J. C.

Penney, C. H.

C. H. Penney, “Raman Scattering, Resonance Raman Scattering and Fluorescence Lidar,” at Eighth International Laser Raman Conference, Philadelphia (1977).

Petri, K.

Renaut, D.

Salik, A.

Schildkraut, E. R.

T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

Strauch, R. C.

R. C. Strauch, A. Cohen, “Atmospheric Remote Sensing with Laser Radar,” in Remote Sensing of the Troposphere, V. Derr, Ed. (U.S. GPO, Washington, D.C., 1972).

Tanenbaum, D.

T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

Tanenbaum, H.

T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. Cooney, Appl. Phys. Lett. 12, 40 (1967).
[CrossRef]

T. Hirschfeld, E. R. Schildkraut, H. Tanenbaum, D. Tanenbaum, Appl. Phys. Lett. 22, 38 (1973).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

C. A. Northend, R. C. Honey, W. F. Evans, Rev. Sci. Instrum. 37, 393 (1966).
[CrossRef]

Other (5)

G. L. Kenestric, J. A. Curcio, “Measurement of Radiance of Horizon Sky,” NRL Report 6615 (1967).

C. H. Penney, “Raman Scattering, Resonance Raman Scattering and Fluorescence Lidar,” at Eighth International Laser Raman Conference, Philadelphia (1977).

R. C. Strauch, A. Cohen, “Atmospheric Remote Sensing with Laser Radar,” in Remote Sensing of the Troposphere, V. Derr, Ed. (U.S. GPO, Washington, D.C., 1972).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ωt and Ωr are the laser and receiver fields of view. The laser pulse is reflected by the reflector M back to the lidar system. Ωtr represents the mirror image of the transmitting system. Z1 is the distance from the mirror image of the transmitter within which all the illuminated volume contribute to the measured Raman signal. Z0/2 is the distance between the lidar and the reflector (= the measurement range).

Fig. 2
Fig. 2

Laser–emitter field of view (internal cone) and the receiver–collector field of view (the larger cone including the internal cone). The Mie particles are located above the cloud base. The Raman scatterers are equally distributed within the whole volume.

Fig. 3
Fig. 3

Double-scattering intensities for three different values of droplet number densities (100 particles/cc; 50 and 10). The single Raman is shown as decreasing due to the increase in the extinction. The collector FOV = 5 mrad.

Fig. 4
Fig. 4

Same as Fig. 3, for different collector’s FOV = 5, 3, and 1 mrad. The larger the FOV the greater is the double-scattering effect.

Tables (1)

Tables Icon

Table I Maximal Ranges Calculated for Nitrogen and Water Vapor Moleculesa

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I F = ( I 0 A β R , F ρ exp ( - 0 Z 0 σ d z ) Z 2 ( Z 0 - Z ) 2 S ( Z ) ) d Z ,
π ω 1 2 Z 2 = π ω 2 2 ( Z 0 - Z ) 2
Z 2 = ω 2 ω 1 + ω 2 Z 0 .
I S , F = π I 0 A β R , F ρ · [ ω 1 2 0 Z 2 d Z ( Z 0 - Z ) 2 + ω 2 2 Z 2 Z 0 d Z Z 2 ] × exp ( - 0 Z 0 σ d z ) .
I S , F = π I 0 A β R , F ρ [ ω 1 2 ( 1 Z 0 - Z 2 - 1 Z 0 ) + ω 2 2 ( 1 Z 2 - 1 Z 0 ) ] exp ( - 0 Z 0 σ d z ) .
1 Z 0 { [ ω 1 2 ( ω 1 + ω 2 ω 1 ) - ω 1 2 ] + [ ω 2 2 ( ω 1 + ω 2 ω 2 ) - ω 2 2 ] } = 2 ω 1 ω 2 Z 0 , I R I S , F = ( π I 0 A * β R , F ρ / Z 0 ) exp ( - 0 Z 0 σ d z ) ,
P Δ λ = P λ ( scattered sunlight ) · Δ λ · A r · Δ Ω ,
I b = P Δ λ · S λ · G ,
SNR = I s 2 · e · f · ( I s + I b + I d ) ,
I Raman S ( θ ) = I 0 ( 7 - sin 2 θ cos 2 ϕ ) Q k n S ,
I Raman ( θ ) = I 0 ( 6 + cos 2 θ ) Q k n S , I Raman ( θ ) = 7 I 0 Q k n S .
I = ( I I U V ) .
I 0 = ( I 0 0 0 0 ) .
I Raman S = 7 I 0 A V S Q k n S R S 2 exp [ - ( σ R + σ M ) 1 ] · exp [ - ( σ R + σ M ) Z 0 / 2 ] ,
R d = 2 R S .
R d = R 1 + R k 1 + R k s .
P M ( θ ) = 1 / k 2 ( P 1 0 0 0 0 P 2 0 0 0 0 P 3 - P 4 0 0 P 4 P 3 ) , I M ( θ ) = P M ( θ ) L ( ϕ ) I 0 Δ V 1 * R k 1 2 exp [ - σ M ( R 1 + R k 1 ) ] ,
L ( ϕ ) = ( cos 2 ϕ sin 2 ϕ ½ sin 2 ϕ 0 sin 2 ϕ cos 2 ϕ - ½ sin 2 ϕ 0 - sin 2 ϕ sin 2 ϕ cos 2 ϕ 0 0 0 0 1 )
I R ( θ ) = I 0 Δ V 1 R k 1 2 Q k n S [ ( 6 + cos 2 θ ) cos 2 ϕ 7 sin 2 ϕ 0 0 ] exp [ - ( σ M R 1 + σ R R 1 k ) ] .
I R - M ( R s ) = 1 , k 1 k I 0 A Δ V 1 Δ V k Q k n s R 1 k 2 R k s 2 k R 2 ( { P 1 R ( π - θ 1 ) [ ( 6 + cos 2 θ 1 ) cos 4 ϕ + 7 sin 4 ϕ ] + P 2 R ( π - θ 1 ) } ( 6 + cos 2 θ 1 ) sin 2 ϕ · cos 2 ϕ + 7 sin 2 ϕ cos 2 ϕ ) ) × exp [ - σ M R 1 - σ R ( R 1 k + R k s ) ] ,
I M - R ( R s ) = 1 , k 1 k I 0 A Δ V 1 * Δ V k * Q k n s R 1 k 2 R k s 2 k M 2 { ( 6 + cos 2 θ 1 ) [ P 1 M ( θ 1 ) cos 4 ϕ + P 2 M ( θ 1 ) sin 4 ϕ ] + 7 [ ( P 1 R ( π - θ 1 ) + P 2 R ( π - θ 1 ) ] cos 2 ϕ sin 2 ϕ } × exp [ - σ M ( R 1 + R k 1 ) - σ R R k s ]
τ = Z 1 Z 2 β λ ( z ) N ( r ) d z = Z 1 Z 2 σ λ ( z , r ) d z ,
N d ( r ) = a r α exp ( - b r γ ) ,

Metrics