Abstract

The extended boundary condition method was used to determine the effect imperfections in small glass and metal shells have on scattered light at 10.6 μm. The results indicate that imperfections cause a shift in the locations of the minima in the differential scattering curve, a change in the extinction efficiency, and the presence of depolarized components for off-axis orientation of the object. Among these, the presence of and changes in the depolarized component are most sensitive to imperfections. We compute the depolarized scatter from shells with types I, II, and III defects and discuss the potential of light scattering as a characterization tool for laser fusion targets

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  2. H. C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  3. R. Jay Fries, AIChE Symp. Ser. 191 75, 208 (1979).
  4. R. L. Whitman, R. P. Kruger, D. M. Stupin, R. H. Day, Appl. Opt. 18, 1266 (1979).
    [CrossRef] [PubMed]
  5. B. W. Weinstein, J. Vac. Sci. Technol. 20, 1349 (1982).
    [CrossRef]
  6. P. C. Waterman, Proc. IEEE 53, 796 (1965).
    [CrossRef]
  7. P. C. Waterman, Alta Freq. 38 (speciale), 348 (1969).
  8. P. W. Barber, C. Yeh, Appl. Opt. 14, 2864 (1975).
    [CrossRef] [PubMed]
  9. B. Peterson, S. Strom, Phys. Rev. D 10, 2870 (1974).
  10. V. N. Bringi, T. A. Seliga, IEEE Trans. Antennas Propag. AP-25, 575 (1977).
    [CrossRef]
  11. D.-S. Wang, P. W. Barber, Appl. Opt. 18, 1190 (1979).
    [CrossRef] [PubMed]
  12. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  13. W. W. Duley, CO2Laser Effects and Applications (Academic, New York, 1976), pp. 135–139.
  14. G. Hass, J. B. Ramsey, Appl. Opt. 8, 1115 (1969).
    [CrossRef] [PubMed]
  15. T. Wentink, W. G. Planet, J. Opt. Soc. Am. 51, 595 (1961).
    [CrossRef]
  16. L. D. Pye, H. J. Stevens, W. C. LaCourse, Introduction to Glass Science (Plenum Press, New York1972), p. 115.
  17. S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
    [CrossRef]
  18. E. H. Farnum, A. R. Gutacker, R. Mulford, J. Vac. Sci. Technol. 18, 1195 (1981).
    [CrossRef]
  19. R. F. Weuerker, H. Sheldon, R. V. Langmuir, J. Appl. Phys. 30, 347 (1959).
  20. H. H. Blau, D. J. McCleese, D. Watson, Appl. Opt. 9, 2522 (1970).
    [CrossRef] [PubMed]

1982

B. W. Weinstein, J. Vac. Sci. Technol. 20, 1349 (1982).
[CrossRef]

1981

E. H. Farnum, A. R. Gutacker, R. Mulford, J. Vac. Sci. Technol. 18, 1195 (1981).
[CrossRef]

1979

1977

V. N. Bringi, T. A. Seliga, IEEE Trans. Antennas Propag. AP-25, 575 (1977).
[CrossRef]

1975

1974

B. Peterson, S. Strom, Phys. Rev. D 10, 2870 (1974).

1970

1969

P. C. Waterman, Alta Freq. 38 (speciale), 348 (1969).

G. Hass, J. B. Ramsey, Appl. Opt. 8, 1115 (1969).
[CrossRef] [PubMed]

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

1965

P. C. Waterman, Proc. IEEE 53, 796 (1965).
[CrossRef]

1961

1959

R. F. Weuerker, H. Sheldon, R. V. Langmuir, J. Appl. Phys. 30, 347 (1959).

Barber, P. W.

Blau, H. H.

Bringi, V. N.

V. N. Bringi, T. A. Seliga, IEEE Trans. Antennas Propag. AP-25, 575 (1977).
[CrossRef]

Day, R. H.

Duley, W. W.

W. W. Duley, CO2Laser Effects and Applications (Academic, New York, 1976), pp. 135–139.

Farnum, E. H.

E. H. Farnum, A. R. Gutacker, R. Mulford, J. Vac. Sci. Technol. 18, 1195 (1981).
[CrossRef]

Gutacker, A. R.

E. H. Farnum, A. R. Gutacker, R. Mulford, J. Vac. Sci. Technol. 18, 1195 (1981).
[CrossRef]

Hass, G.

Jasperson, S. N.

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

Jay Fries, R.

R. Jay Fries, AIChE Symp. Ser. 191 75, 208 (1979).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kruger, R. P.

LaCourse, W. C.

L. D. Pye, H. J. Stevens, W. C. LaCourse, Introduction to Glass Science (Plenum Press, New York1972), p. 115.

Langmuir, R. V.

R. F. Weuerker, H. Sheldon, R. V. Langmuir, J. Appl. Phys. 30, 347 (1959).

McCleese, D. J.

Mulford, R.

E. H. Farnum, A. R. Gutacker, R. Mulford, J. Vac. Sci. Technol. 18, 1195 (1981).
[CrossRef]

Peterson, B.

B. Peterson, S. Strom, Phys. Rev. D 10, 2870 (1974).

Planet, W. G.

Pye, L. D.

L. D. Pye, H. J. Stevens, W. C. LaCourse, Introduction to Glass Science (Plenum Press, New York1972), p. 115.

Ramsey, J. B.

Schnatterly, S. E.

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

Seliga, T. A.

V. N. Bringi, T. A. Seliga, IEEE Trans. Antennas Propag. AP-25, 575 (1977).
[CrossRef]

Sheldon, H.

R. F. Weuerker, H. Sheldon, R. V. Langmuir, J. Appl. Phys. 30, 347 (1959).

Stevens, H. J.

L. D. Pye, H. J. Stevens, W. C. LaCourse, Introduction to Glass Science (Plenum Press, New York1972), p. 115.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Strom, S.

B. Peterson, S. Strom, Phys. Rev. D 10, 2870 (1974).

Stupin, D. M.

Van De Hulst, H. C.

H. C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wang, D.-S.

Waterman, P. C.

P. C. Waterman, Alta Freq. 38 (speciale), 348 (1969).

P. C. Waterman, Proc. IEEE 53, 796 (1965).
[CrossRef]

Watson, D.

Weinstein, B. W.

B. W. Weinstein, J. Vac. Sci. Technol. 20, 1349 (1982).
[CrossRef]

Wentink, T.

Weuerker, R. F.

R. F. Weuerker, H. Sheldon, R. V. Langmuir, J. Appl. Phys. 30, 347 (1959).

Whitman, R. L.

Yeh, C.

AIChE Symp. Ser. 191

R. Jay Fries, AIChE Symp. Ser. 191 75, 208 (1979).

Alta Freq.

P. C. Waterman, Alta Freq. 38 (speciale), 348 (1969).

Appl. Opt.

IEEE Trans. Antennas Propag.

V. N. Bringi, T. A. Seliga, IEEE Trans. Antennas Propag. AP-25, 575 (1977).
[CrossRef]

J. Appl. Phys.

R. F. Weuerker, H. Sheldon, R. V. Langmuir, J. Appl. Phys. 30, 347 (1959).

J. Opt. Soc. Am.

J. Vac. Sci. Technol.

E. H. Farnum, A. R. Gutacker, R. Mulford, J. Vac. Sci. Technol. 18, 1195 (1981).
[CrossRef]

B. W. Weinstein, J. Vac. Sci. Technol. 20, 1349 (1982).
[CrossRef]

Phys. Rev. D

B. Peterson, S. Strom, Phys. Rev. D 10, 2870 (1974).

Proc. IEEE

P. C. Waterman, Proc. IEEE 53, 796 (1965).
[CrossRef]

Rev. Sci. Instrum.

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

Other

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

H. C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

W. W. Duley, CO2Laser Effects and Applications (Academic, New York, 1976), pp. 135–139.

L. D. Pye, H. J. Stevens, W. C. LaCourse, Introduction to Glass Science (Plenum Press, New York1972), p. 115.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Defect types of primary interest in glass or metal shells.

Fig. 2
Fig. 2

Characterization requirements on shells used in laser fusion targets.

Fig. 3
Fig. 3

Geometry used in the scattering calculations.

Fig. 4
Fig. 4

Scattering from glass shells with a 1% wall and a 1% type I defect at ka values of 5, 10, 20, and 30.

Fig. 5
Fig. 5

Scattering from glass shells with 2, 5, and 10% walls, ka = 20, and a 1% type I defect.

Fig. 6
Fig. 6

Scattering from glass shells with 1% walls, ka = 20, and 2, 5, and 10% type I defects.

Fig. 7
Fig. 7

Scattering from glass shells with a 1% wall and a 1% type II defect on the outside surface at ka values of 5, 10, 20, and 30.

Fig. 8
Fig. 8

Effect of a 1% type II defect at ka = 20 on the inside I or outside O surface for glass shells with 1 (a) and 10% (b) walls.

Fig. 9
Fig. 9

Effect of increasing type II defect size to 2, 5, and 10% for a glass shell with 1% wall and ka = 20.

Fig. 10
Fig. 10

Scattering by glass shells with 1, 2, 5, and 10% oblate type II defects at ka = 20.

Fig. 11
Fig. 11

Scattering by perfect conductor spheres with 1% type II defects at ka values of 5, 10, 20, and 30.

Fig. 12
Fig. 12

Effect of 2, 5, and 10% defects on a perfect conductor with ka = 20.

Fig. 13
Fig. 13

Comparisons of scattering with vertical (90°) and horizontal (0°) incident light for 1% type II defects on perfectly conducting spheres at ka = 20.

Fig. 14
Fig. 14

Scattering by glass shells with a 1% wall, 1% type III defect at ka values of 5, 10, 20, and 30.

Fig. 15
Fig. 15

Effect of increasing type III defect size to 2, 5, and 10% at ka = 20 for a glass shell with 1% wall.

Fig. 16
Fig. 16

Comparison of scattering by inside vs outside surface type III defects for glass shells with 1% wall, ka = 20.

Fig. 17
Fig. 17

Scattering by perfect conductor spheres with 1% type III defects at ka values of 5, 10, 20, and 30.

Fig. 18
Fig. 18

Effect of increasing defect size to 2, 5, and 10% at ka = 20 for perfect conductor spheres.

Fig. 19
Fig. 19

Cross sections for scattering at 10.6 μm by a glass shell with a 10-μm wall and 101.2-μm diameter. The shell has a hemispherical bump on the outside surface whose maximum height off the surface is 100 Å and whose diameter is 10 μm.

Fig. 20
Fig. 20

Scattering arrangement for the detection of very weak depolarized signals.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E 3 ( r ) 0 } = E i ( r ) + E s ( r ) = E i ( r ) + × s 2 [ n ˆ 2 × E + 3 ( k 3 r ) ] · G ¯ ¯ ( k 3 R ) d s × × s 2 1 j ω 3 ( n ˆ 3 × H + 3 ( k 3 r ) · G ¯ ¯ ( k 3 R ) d s ; { outside S 2 , inside S 2 ,
E 2 ( r ) 0 } = × s 2 [ n ˆ 2 × E 2 ( k 2 r ) · G ¯ ¯ ( k 2 R ) d s × × s 2 1 j ω 2 [ n ˆ 2 × H 2 ( k 2 r ) ] · G ¯ ¯ ( k 2 R ) d s + × s 1 [ n ˆ 1 × E + 2 ( k 2 r ) ] · G ¯ ¯ ( k 2 R ) d s × × s 1 1 j ω 1 [ n ˆ 1 × H + 2 ( k 2 r ) ] · G ¯ ¯ ( k 2 R ) d s ; { between S 1 and S 2 , outside S 2 and inside S 1 ,
n ˆ 2 × E + 3 = n ˆ 2 × E 2 n ˆ 2 × H + 3 = n ˆ 2 × H 2 } on S 2 ,
n ˆ 1 × E + 2 = n ˆ 1 × E 1 n ˆ 1 × H + 2 = n ˆ 1 × H 1 } on S 1 .
E i ( r ) = ν D ν [ a ν M ν 1 ( k 3 r ) + b ν N ν 1 ( k 3 r ) ] ,
E s ( r ) = ν D ν [ f ν M ν 3 ( k 3 r ) + g ν N ν 3 ( k 3 r ) ] ,
E 2 ( r ) = ν D ν [ γ ν M ν 1 ( k 2 r ) + δ ν N ν 1 ( k 2 r ) + α ν M ν 3 ( k 2 r ) + β ν N ν 3 ( k 2 r ) ] ,
E 1 ( r ) = ν D ν [ c ν M ν 1 ( k 1 r ) + d ν N ν 1 ( k 1 r ) ] ,
[ f g ] = [ T 2 ] [ a / 4 b / 4 ] .
[ T 2 ] = { [ Q 2 11 ] [ Q 2 13 ] [ D ] [ T 1 ] [ D ] 1 } · { [ Q 2 31 ] [ Q 2 33 ] [ D ] [ T 1 ] [ D ] 1 } 1 ,
[ T 1 ] = [ Q 1 11 ] [ Q 1 31 ] 1 .
E s ( k r ) = F ( θ s , ϕ s / θ i , ϕ i ) exp ( i k r ) r ; r ,
σ D ( θ s , ϕ s / θ i , ϕ i ) = | F ( θ s , ϕ s / θ i , ϕ i ) | 2 .
[ S 2 S 3 S 4 S 1 ] .
I det ~ r 2 2 + r 3 2 2 r 2 r 3 cos ϕ 32 [ J 0 ( A ) + 1 2 J 2 n ( A ) cos 2 n ω t ] + 2 r 2 r 3 sin ϕ 32 [ 0 2 J 2 n + 1 ( A ) sin ( 2 n + 1 ) ω t ] ,
I det ( ω ) ~ 4 J 1 ( A ) r 2 r 3 sin ϕ 32 sin ω t ,
I det ( 2 ω ) ~ 4 J 2 ( A ) r 2 r 3 cos ϕ 32 cos 2 ω t .
I ac I dc = 4 r 2 r 3 r 2 2 + r 3 2 ~ 4 ( r 3 r 2 ) .
P ac = NEP ( SNR ) 2 Δ f ,
d = 4 3 ( b 3 a 3 b 2 ) .
I = I 0 exp ( α l ) I 0 ( 1 α l ) ,

Metrics