Abstract

The theoretical concepts underlying remote sensing of estuarine parameters using laser excitation are examined. The concepts are extended to include Mie scattering as a measure of the total suspended solids and to develop the water Raman signal as an internal standard. Experimental validation of the theory was performed using backscattered laser light from a laboratory tank to simulate a remote-sensing geometry. Artificially prepared sediments and biological cultures were employed to check specific aspects of the theory under controlled conditions. Natural samples gathered from a variety of water types were also analyzed in the tank to further enhance the simulation. The results indicate that it should be possible to remotely quantify total suspended solids, dissolved organics, attenuation coefficient, chlorophyll a, and phycoerythrin in estuarine water using laser excitation.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Kim, G. D. Hickman, NASA Spec. Publ. 375, 197 (1975).
  2. F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  3. M. Bristow, D. Nielsen, D. Bundy, R. Furtek, Appl. Opt. 20, 2889 (1981).
    [CrossRef] [PubMed]
  4. M. J. R. Fasham, Oceanogr. Mar. Biol. 16, 43 (1978).
  5. J. C. Munday, P. L. Zubkoff, Photogr. Eng. Remote Sensing 47, 523 (1981).
  6. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), pp. 132–137.
  7. R. F. Lutomirski, “Blue-Green Lasers for Air to Water Applications,” in Proceedings International Conference on Lasers, Orlando, Fla., 11–15 Dec. 1978 (STS Press, McLean, Va.1979), pp. 60–67.
  8. N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968).
  9. E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Tech. Note D-8447 (June1977).
  10. H. R. Gordon, Appl. Opt. 12, 2803 (1973).
    [CrossRef] [PubMed]
  11. W. R. McCluney, Appl. Opt. 13, 2422 (1974).
    [CrossRef] [PubMed]
  12. H. R. Gordon, W. R. McCluney, Appl. Opt. 14, 413 (1975).
    [CrossRef] [PubMed]
  13. G. Kullenberg, “Observed and Computed Scattering Functions,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, Eds. (Academic, New York, 1974), pp. 25–49.
  14. A. V. Zimmermann, “Research and Investigation of the Radiation Induced by a Laser Beam Incident on Seawater,” NASA Contract. Rep. 145149 (1977).
  15. C. S. Yentsch, C. M. Yentsch, J. Mar. Res. 37, 471 (1979).
  16. C. A. Brown, O. Jarrett, F. H. Farmer, “Laboratory Tank Studies of Single Species of Phytoplankton Using a Remote Sensing Fluorosensor,” NASA Tech. Paper 1821 (1981).
  17. O. Jarrett, P. B. Mumola, C. A. Brown, “Four Wavelength Lidar Applied to Determination of Chlorophyll a Concentration and Algae Color Groups,” in Remote Sensing and Water Resource Management Proceedings 17 (American Water Resources Association, Urbana, 1973).
  18. F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
    [CrossRef] [PubMed]
  19. F. E. Hoge, R. N. Swift, “Application of the NASA-Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” NASA Conf. Publ. 2188, 349 (1981).
  20. S. R. Pal, A. I. Carswell, K. S. Jammu, Can. J. Phys. 57, 1414 (1979).
    [CrossRef]
  21. R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).
  22. C. M. Moreth, C. S. Yentsch, Limnol. Oceanogr. 15, 313 (1970).
    [CrossRef]
  23. D. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin From Algae,” NASA Contract. Report 165996 (1982).
  24. D. M. Rayner, R. O’Neil, Opt. News 5, (3) 13 (1979).
    [CrossRef]
  25. Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974).
    [PubMed]
  26. G. D. Gilbert, Appl. Opt. 9, 421 (1970).
    [CrossRef] [PubMed]
  27. W. G. Swarner, Appl. Opt. 9, 507 (1970).
    [CrossRef] [PubMed]
  28. W. G. Egan, “Manned Submersible Optical Remote Sensing Within the Gulf Stream” in Proceedings, Sixth International Symposium on Remote Sensing of the Environment, Vol. 2 (Environmental Research Institute of Michigan, Ann Arbor, 1969), pp. 721–735.
  29. W. M. Houghton, R. J. Exton, R. W. Gregory, “Field Investigation of Techniques for Remote Laser Sensing of Oceanographic Parameters,” Remote Sensing Environ. 13, 1 (Jan.1983).
    [CrossRef]

1983 (1)

W. M. Houghton, R. J. Exton, R. W. Gregory, “Field Investigation of Techniques for Remote Laser Sensing of Oceanographic Parameters,” Remote Sensing Environ. 13, 1 (Jan.1983).
[CrossRef]

1981 (3)

1980 (1)

1979 (3)

C. S. Yentsch, C. M. Yentsch, J. Mar. Res. 37, 471 (1979).

S. R. Pal, A. I. Carswell, K. S. Jammu, Can. J. Phys. 57, 1414 (1979).
[CrossRef]

D. M. Rayner, R. O’Neil, Opt. News 5, (3) 13 (1979).
[CrossRef]

1978 (1)

M. J. R. Fasham, Oceanogr. Mar. Biol. 16, 43 (1978).

1975 (3)

H. H. Kim, G. D. Hickman, NASA Spec. Publ. 375, 197 (1975).

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

H. R. Gordon, W. R. McCluney, Appl. Opt. 14, 413 (1975).
[CrossRef] [PubMed]

1974 (2)

W. R. McCluney, Appl. Opt. 13, 2422 (1974).
[CrossRef] [PubMed]

Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974).
[PubMed]

1973 (1)

1970 (3)

Austin, R. W.

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

Bristow, M.

Browell, E. V.

E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Tech. Note D-8447 (June1977).

Brown, C. A.

C. A. Brown, O. Jarrett, F. H. Farmer, “Laboratory Tank Studies of Single Species of Phytoplankton Using a Remote Sensing Fluorosensor,” NASA Tech. Paper 1821 (1981).

O. Jarrett, P. B. Mumola, C. A. Brown, “Four Wavelength Lidar Applied to Determination of Chlorophyll a Concentration and Algae Color Groups,” in Remote Sensing and Water Resource Management Proceedings 17 (American Water Resources Association, Urbana, 1973).

Bundy, D.

Carswell, A. I.

S. R. Pal, A. I. Carswell, K. S. Jammu, Can. J. Phys. 57, 1414 (1979).
[CrossRef]

Egan, W. G.

W. G. Egan, “Manned Submersible Optical Remote Sensing Within the Gulf Stream” in Proceedings, Sixth International Symposium on Remote Sensing of the Environment, Vol. 2 (Environmental Research Institute of Michigan, Ann Arbor, 1969), pp. 721–735.

Exton, R. J.

W. M. Houghton, R. J. Exton, R. W. Gregory, “Field Investigation of Techniques for Remote Laser Sensing of Oceanographic Parameters,” Remote Sensing Environ. 13, 1 (Jan.1983).
[CrossRef]

Farmer, F. H.

C. A. Brown, O. Jarrett, F. H. Farmer, “Laboratory Tank Studies of Single Species of Phytoplankton Using a Remote Sensing Fluorosensor,” NASA Tech. Paper 1821 (1981).

Fasham, M. J. R.

M. J. R. Fasham, Oceanogr. Mar. Biol. 16, 43 (1978).

Frederick, E. B.

Furtek, R.

Gilbert, G. D.

Gordon, H. R.

Govindjee,

Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974).
[PubMed]

Govindjee, R.

Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974).
[PubMed]

Gregory, R. W.

W. M. Houghton, R. J. Exton, R. W. Gregory, “Field Investigation of Techniques for Remote Laser Sensing of Oceanographic Parameters,” Remote Sensing Environ. 13, 1 (Jan.1983).
[CrossRef]

Hickman, G. D.

H. H. Kim, G. D. Hickman, NASA Spec. Publ. 375, 197 (1975).

Hoge, F. E.

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA-Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” NASA Conf. Publ. 2188, 349 (1981).

Houghton, W. M.

W. M. Houghton, R. J. Exton, R. W. Gregory, “Field Investigation of Techniques for Remote Laser Sensing of Oceanographic Parameters,” Remote Sensing Environ. 13, 1 (Jan.1983).
[CrossRef]

Jammu, K. S.

S. R. Pal, A. I. Carswell, K. S. Jammu, Can. J. Phys. 57, 1414 (1979).
[CrossRef]

Jarrett, O.

O. Jarrett, P. B. Mumola, C. A. Brown, “Four Wavelength Lidar Applied to Determination of Chlorophyll a Concentration and Algae Color Groups,” in Remote Sensing and Water Resource Management Proceedings 17 (American Water Resources Association, Urbana, 1973).

C. A. Brown, O. Jarrett, F. H. Farmer, “Laboratory Tank Studies of Single Species of Phytoplankton Using a Remote Sensing Fluorosensor,” NASA Tech. Paper 1821 (1981).

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968).

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), pp. 132–137.

Kim, H. H.

H. H. Kim, G. D. Hickman, NASA Spec. Publ. 375, 197 (1975).

Kullenberg, G.

G. Kullenberg, “Observed and Computed Scattering Functions,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, Eds. (Academic, New York, 1974), pp. 25–49.

Lutomirski, R. F.

R. F. Lutomirski, “Blue-Green Lasers for Air to Water Applications,” in Proceedings International Conference on Lasers, Orlando, Fla., 11–15 Dec. 1978 (STS Press, McLean, Va.1979), pp. 60–67.

McCluney, W. R.

Moreth, C. M.

C. M. Moreth, C. S. Yentsch, Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

Mumola, P. B.

O. Jarrett, P. B. Mumola, C. A. Brown, “Four Wavelength Lidar Applied to Determination of Chlorophyll a Concentration and Algae Color Groups,” in Remote Sensing and Water Resource Management Proceedings 17 (American Water Resources Association, Urbana, 1973).

Munday, J. C.

J. C. Munday, P. L. Zubkoff, Photogr. Eng. Remote Sensing 47, 523 (1981).

Nielsen, D.

O’Neil, R.

D. M. Rayner, R. O’Neil, Opt. News 5, (3) 13 (1979).
[CrossRef]

Pal, S. R.

S. R. Pal, A. I. Carswell, K. S. Jammu, Can. J. Phys. 57, 1414 (1979).
[CrossRef]

Petzold, T. J.

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

Rayner, D. M.

D. M. Rayner, R. O’Neil, Opt. News 5, (3) 13 (1979).
[CrossRef]

Stewart, D.

D. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin From Algae,” NASA Contract. Report 165996 (1982).

Swarner, W. G.

Swift, R. N.

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA-Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” NASA Conf. Publ. 2188, 349 (1981).

Yentsch, C. M.

C. S. Yentsch, C. M. Yentsch, J. Mar. Res. 37, 471 (1979).

Yentsch, C. S.

C. S. Yentsch, C. M. Yentsch, J. Mar. Res. 37, 471 (1979).

C. M. Moreth, C. S. Yentsch, Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

Zimmermann, A. V.

A. V. Zimmermann, “Research and Investigation of the Radiation Induced by a Laser Beam Incident on Seawater,” NASA Contract. Rep. 145149 (1977).

Zubkoff, P. L.

J. C. Munday, P. L. Zubkoff, Photogr. Eng. Remote Sensing 47, 523 (1981).

Appl. Opt. (8)

Can. J. Phys. (1)

S. R. Pal, A. I. Carswell, K. S. Jammu, Can. J. Phys. 57, 1414 (1979).
[CrossRef]

J. Mar. Res. (1)

C. S. Yentsch, C. M. Yentsch, J. Mar. Res. 37, 471 (1979).

Limnol. Oceanogr. (1)

C. M. Moreth, C. S. Yentsch, Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

NASA Spec. Publ. (1)

H. H. Kim, G. D. Hickman, NASA Spec. Publ. 375, 197 (1975).

Ocean Opt. (1)

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

Oceanogr. Mar. Biol. (1)

M. J. R. Fasham, Oceanogr. Mar. Biol. 16, 43 (1978).

Opt. News (1)

D. M. Rayner, R. O’Neil, Opt. News 5, (3) 13 (1979).
[CrossRef]

Photogr. Eng. Remote Sensing (1)

J. C. Munday, P. L. Zubkoff, Photogr. Eng. Remote Sensing 47, 523 (1981).

Remote Sensing Environ. (1)

W. M. Houghton, R. J. Exton, R. W. Gregory, “Field Investigation of Techniques for Remote Laser Sensing of Oceanographic Parameters,” Remote Sensing Environ. 13, 1 (Jan.1983).
[CrossRef]

Sci. Am. (1)

Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974).
[PubMed]

Other (11)

G. Kullenberg, “Observed and Computed Scattering Functions,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, Eds. (Academic, New York, 1974), pp. 25–49.

A. V. Zimmermann, “Research and Investigation of the Radiation Induced by a Laser Beam Incident on Seawater,” NASA Contract. Rep. 145149 (1977).

C. A. Brown, O. Jarrett, F. H. Farmer, “Laboratory Tank Studies of Single Species of Phytoplankton Using a Remote Sensing Fluorosensor,” NASA Tech. Paper 1821 (1981).

O. Jarrett, P. B. Mumola, C. A. Brown, “Four Wavelength Lidar Applied to Determination of Chlorophyll a Concentration and Algae Color Groups,” in Remote Sensing and Water Resource Management Proceedings 17 (American Water Resources Association, Urbana, 1973).

W. G. Egan, “Manned Submersible Optical Remote Sensing Within the Gulf Stream” in Proceedings, Sixth International Symposium on Remote Sensing of the Environment, Vol. 2 (Environmental Research Institute of Michigan, Ann Arbor, 1969), pp. 721–735.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), pp. 132–137.

R. F. Lutomirski, “Blue-Green Lasers for Air to Water Applications,” in Proceedings International Conference on Lasers, Orlando, Fla., 11–15 Dec. 1978 (STS Press, McLean, Va.1979), pp. 60–67.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968).

E. V. Browell, “Analysis of Laser Fluorosensor Systems for Remote Algae Detection and Quantification,” NASA Tech. Note D-8447 (June1977).

F. E. Hoge, R. N. Swift, “Application of the NASA-Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” NASA Conf. Publ. 2188, 349 (1981).

D. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin From Algae,” NASA Contract. Report 165996 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of laboratory laser fluorosensor configuration: F, color filter; BS, beam splitter; M, mirror.

Fig. 2
Fig. 2

Backscattered spectrum for a York River sample excited by an Ar-ion laser at 514.5 nm. Also shown is the diffuse attenuation coefficient for this sample.

Fig. 3
Fig. 3

Backscattered spectrum of a natural sample, the residual DOM fluorescence for this sample, and the natural spectrum corrected for the DOM fluorescence (see text for DOM correction technique).

Fig. 4
Fig. 4

Backscattered spectra from the same natural sample when excited at 514.5- and 532.0 nm.

Fig. 5
Fig. 5

Mie and water Raman scattering from Calvert clay (strong scatterer) suspended in water.

Fig. 6
Fig. 6

Mie and water Raman scattering from black ink (strong absorber) dissolved in water.

Fig. 7
Fig. 7

Phycoerythrin fluorescence as a function of the amount of added algae (Synechococcus).

Fig. 8
Fig. 8

Sampling sites in the Chesapeake Bay and its tributaries.

Fig. 9
Fig. 9

Ratio of the Mie to water Raman intensities as a function of the total suspended solids (TSS) for the Chesapeake Bay samples.

Fig. 10
Fig. 10

Ratio of the chlorophyll a to water Raman intensities as a function of the total amount of the chlorophyll for the Chesapeake Bay samples.

Fig. 11
Fig. 11

Ratio of the DOM to water Raman intensities as a function of the total amount of DOC for the Chesapeake Bay samples.

Fig. 12
Fig. 12

Ratio of the DOM to water Raman intensities as a function of the absorption coefficient at 400 nm for the Chesapeake Bay samples.

Fig. 13
Fig. 13

A plot of the inverse of the water Raman intensity as a function of the beam attenuation coefficient at 550 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d P = K N σ exp [ ( γ L + γ u ) z ] d z ( z + m R ) 2 ,
K = P 0 ξ A R Δ λ D ( 1 ρ L ) ( 1 ρ u ) exp [ ( β L + β u ) R ] 4 π Δ λ F ,
P = K m 2 R 2 N σ γ L + γ u .
P M = K 1 m 2 R 2 N S σ S 2 γ L Mie ,
P R = K 2 m 2 R 2 N R σ R γ L + γ R Raman ,
P F = K 3 m 2 R 2 N F σ F γ L + γ F fluorescence ,
P M / P R = K 4 N S σ S N R σ R γ L + γ R 2 γ L ,
P F / P R = K 5 N F σ F N R σ R γ L + γ R γ L + γ F ,

Metrics